
Tracking

Many slides adapted from Kristen Grauman, Deva Ramanan



Tracking with dynamics
• Key idea: Given a model of expected motion, 

predict where objects will occur in next frame, 
even before seeing the image
• Restrict search for the object
• Improved estimates since measurement noise is reduced by 

trajectory smoothness



General model for tracking
• The moving object of interest is characterized 

by an underlying state X
• State X gives rise to measurements or 

observations Y
• At each time t, the state changes to Xt and we 

get a new observation Yt



Steps of tracking
• Prediction: What is the next state of the object 

given past measurements? 

( )1100 ,, −− == ttt yYyYXP K
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Steps of tracking
• Prediction: What is the next state of the object 

given past measurements? 

• Correction: Compute an updated estimate of 
the state from prediction and measurements

• Tracking can be seen as the process of 
propagating the posterior distribution of state 
given measurements across time

( )1100 ,, −− == ttt yYyYXP K

( )ttttt yYyYyYXP === −− ,,, 1100 K



Simplifying assumptions
• Only the immediate past matters
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Simplifying assumptions
• Only the immediate past matters

• Measurements depend only on the current state

( ) ( )110 ,, −− = tttt XXPXXXP K

( ) ( )tttttt XYPXYXYXYP =−− ,,,, 1100 K
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Tracking as induction
• Base case: 

• Assume we have initial prior that predicts state in absence of 
any evidence: P(X0)

• At the first frame, correct this given the value of Y0=y0
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Tracking as induction
• Base case: 

• Assume we have initial prior that predicts state in absence of 
any evidence: P(X0)

• At the first frame, correct this given the value of Y0=y0

• Given corrected estimate for frame t: 
• Predict for frame t+1
• Correct for frame t+1

predict correct



Prediction
• Prediction involves representing

given 
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Prediction
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Correction
• Correction involves computing

given predicted value 
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Correction
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Correction
• Correction involves computing
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Correction
• Correction involves computing

given predicted value 
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Summary: Prediction and correction
• Prediction:

• Correction:
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The Kalman filter
• Linear dynamics model: state undergoes linear 

transformation plus Gaussian noise
• Observation model: measurement is linearly 

transformed state plus Gaussian noise
• The predicted/corrected state distributions are 

Gaussian
• You only need to maintain the mean and covariance
• The calculations are easy (all the integrals can be done in 

closed form)



Propagation of Gaussian densities



Propagation of general densities



Factored sampling

• Represent the state distribution non-parametrically
• Prediction: Sample points from prior density for the state, P(X)
• Correction: Weight the samples according to P(Y|X)

M. Isard and A. Blake, CONDENSATION -- conditional density propagation for 
visual tracking, IJCV 29(1):5-28, 1998
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Particle filtering

M. Isard and A. Blake, CONDENSATION -- conditional density propagation for 
visual tracking, IJCV 29(1):5-28, 1998

Start with weighted 
samples from previous 
time step

Sample and shift 
according to dynamics 
model

Spread due to 
randomness; this is 
predicted density P(Xt|Yt-1)

Weight the samples
according to observation 
density

Arrive at corrected density 
estimate P(Xt|Yt)

http://www.robots.ox.ac.uk/~ab/abstracts/ijcv98.html
http://www.robots.ox.ac.uk/~ab/abstracts/ijcv98.html


Particle filtering results

http://www.robots.ox.ac.uk/~misard/condensation.html

http://www.robots.ox.ac.uk/~misard/condensation.html


Tracking issues
• Initialization

• Manual
• Background subtraction
• Detection



Tracking issues
• Initialization
• Obtaining observation and dynamics model

• Generative observation model: “render” the state on top of 
the image and compare

• Discriminative observation model: classifier or detector score
• Dynamics model: learn (very difficult) or specify using 

domain knowledge



Tracking issues
• Initialization
• Obtaining observation and dynamics model
• Prediction vs. correction

• If the dynamics model is too strong, will end up ignoring the 
data 

• If the observation model is too strong, tracking is reduced to 
repeated detection



Tracking issues
• Initialization
• Obtaining observation and dynamics model
• Prediction vs. correction
• Data association

• What if we don’t know which measurements to associate 
with which tracks?



Data association
• So far, we’ve assumed the 

entire measurement to be 
relevant to determining the 
state

• In reality, there may be 
uninformative 
measurements (clutter) or 
measurements may belong 
to different tracked objects

• Data association: task of 
determining which 
measurements go with 
which tracks



Data association
• Simple strategy: only pay attention to the 

measurement that is “closest” to the 
prediction



Data association
• Simple strategy: only pay attention to the 

measurement that is “closest” to the 
prediction

Doesn’t always work…



Data association
• Simple strategy: only pay attention to the 

measurement that is “closest” to the 
prediction

• More sophisticated strategy: keep track of 
multiple state/observation hypotheses
• Can be done with particle filtering

• This is a general problem in computer vision, 
there is no easy solution



Recall: Generative part-based models

h: assignment of features to parts
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Recall: Generative part-based models

h: assignment of features to parts

Candidate partsModel

h: assignment of features to parts
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Tracking issues
• Initialization
• Obtaining observation and dynamics model
• Prediction vs. correction
• Data association
• Drift

• Errors caused by dynamical model, observation model, and 
data association tend to accumulate over time



Drift

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their 
Appearance. PAMI 2007.

http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html
http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html


Tracking people by learning their appearance
• Person model = appearance + structure 

(+ dynamics)
• Structure and dynamics are generic, 

appearance is person-specific
• Trying to acquire an appearance model “on 

the fly” can lead to drift
• Instead, can use the whole sequence to 

initialize the appearance model and then 
keep it fixed while tracking

• Given strong structure and appearance 
models, tracking can essentially be done by 
repeated detection (with some smoothing)

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their 
Appearance. PAMI 2007.

http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html
http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html


Tracking people by learning their appearance

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their 
Appearance. PAMI 2007.

Tracker

http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html
http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html


Representing people



Bottom-up initialization: Clustering

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their 
Appearance. PAMI 2007.

http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html
http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html


Top-down initialization: Exploit “easy” poses

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their 
Appearance. PAMI 2007.

http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html
http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html


Example results

http://www.ics.uci.edu/~dramanan/papers/pose/index.html

http://www.ics.uci.edu/~dramanan/papers/pose/index.html
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