## Tracking



Many slides adapted from Kristen Grauman, Deva Ramanan

## Tracking with dynamics

- Key idea: Given a model of expected motion, predict where objects will occur in next frame, even before seeing the image
  - Restrict search for the object
  - Improved estimates since measurement noise is reduced by trajectory smoothness

### General model for tracking

- The moving object of interest is characterized by an underlying *state X*
- State X gives rise to *measurements* or observations Y
- At each time *t*, the state changes to  $X_t$  and we get a new observation  $Y_t$

## Steps of tracking

• **Prediction:** What is the next state of the object given past measurements?

$$P(X_t | Y_0 = y_0, \dots, Y_{t-1} = y_{t-1})$$

## Steps of tracking

• **Prediction:** What is the next state of the object given past measurements?

$$P(X_t|Y_0 = y_0, \dots, Y_{t-1} = y_{t-1})$$

 Correction: Compute an updated estimate of the state from prediction and measurements

$$P(X_t | Y_0 = y_0, \dots, Y_{t-1} = y_{t-1}, Y_t = y_t)$$

## Steps of tracking

• **Prediction:** What is the next state of the object given past measurements?

$$P(X_t|Y_0 = y_0, \dots, Y_{t-1} = y_{t-1})$$

Correction: Compute an updated estimate of the state from prediction and measurements

$$P(X_t | Y_0 = y_0, \dots, Y_{t-1} = y_{t-1}, Y_t = y_t)$$

 Tracking can be seen as the process of propagating the posterior distribution of state given measurements across time

## Simplifying assumptions

• Only the immediate past matters

$$P(X_t|X_0,...,X_{t-1}) = P(X_t|X_{t-1})$$

dynamics model

## Simplifying assumptions

• Only the immediate past matters

$$P(X_t|X_0,...,X_{t-1}) = P(X_t|X_{t-1})$$

dynamics model

Measurements depend only on the current state

$$P(Y_t | X_0, Y_0, \dots, X_{t-1}, Y_{t-1}, X_t) = P(Y_t | X_t)$$

observation model

## Simplifying assumptions

• Only the immediate past matters

$$P(X_t|X_0,...,X_{t-1}) = P(X_t|X_{t-1})$$

dynamics model

Measurements depend only on the current state

$$P(Y_t|X_0, Y_0, \dots, X_{t-1}, Y_{t-1}, X_t) = P(Y_t|X_t)$$

observation model



### Tracking as induction

- Base case:
  - Assume we have initial prior that predicts state in absence of any evidence:  $P(X_0)$
  - At the first frame, *correct* this given the value of  $Y_0 = y_0$

#### Tracking as induction

- Base case:
  - Assume we have initial prior that predicts state in absence of any evidence: P(X<sub>0</sub>)
  - At the first frame, *correct* this given the value of  $Y_0 = y_0$

$$P(X_0 | Y_0 = y_0) = \frac{P(y_0 | X_0) P(X_0)}{P(y_0)} \propto P(y_0 | X_0) P(X_0)$$

### Tracking as induction

- Base case:
  - Assume we have initial prior that predicts state in absence of any evidence: P(X<sub>0</sub>)
  - At the first frame, *correct* this given the value of  $Y_0 = y_0$
- Given corrected estimate for frame *t*.
  - Predict for frame t+1
  - Correct for frame t+1



• Prediction involves representing  $P(X_t | y_0, ..., y_{t-1})$ given  $P(X_{t-1} | y_0, ..., y_{t-1})$ 

• Prediction involves representing  $P(X_t | y_0, ..., y_{t-1})$ given  $P(X_{t-1} | y_0, ..., y_{t-1})$ 

$$P(X_{t}|y_{0},...,y_{t-1})$$
  
=  $\int P(X_{t}, X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$   
Law of total probability

• Prediction involves representing  $P(X_t | y_0, ..., y_{t-1})$ given  $P(X_{t-1} | y_0, ..., y_{t-1})$ 

$$P(X_{t}|y_{0},...,y_{t-1})$$

$$= \int P(X_{t},X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

$$= \int P(X_{t}|X_{t-1},y_{0},...,y_{t-1})P(X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

Conditioning on  $X_{t-1}$ 

• Prediction involves representing  $P(X_t|y_0,...,y_{t-1})$ given  $P(X_{t-1}|y_0,...,y_{t-1})$ 

$$P(X_{t}|y_{0},...,y_{t-1})$$

$$= \int P(X_{t},X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

$$= \int P(X_{t}|X_{t-1},y_{0},...,y_{t-1})P(X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

$$= \int P(X_{t}|X_{t-1})P(X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

Independence assumption

• Prediction involves representing  $P(X_t|y_0,...,y_{t-1})$ given  $P(X_{t-1}|y_0,...,y_{t-1})$ 

$$P(X_{t}|y_{0},...,y_{t-1})$$

$$= \int P(X_{t},X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

$$= \int P(X_{t}|X_{t-1},y_{0},...,y_{t-1})P(X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$

$$= \int P(X_{t}|X_{t-1})P(X_{t-1}|y_{0},...,y_{t-1})dX_{t-1}$$
dynamics corrected estimate from previous step

• Correction involves computing  $P(X_t|y_0,...,y_t)$ given predicted value  $P(X_t|y_0,...,y_{t-1})$ 

• Correction involves computing  $P(X_t|y_0,...,y_t)$ given predicted value  $P(X_t|y_0,...,y_{t-1})$  $P(X_t|y_0,...,y_t)$  $= \frac{P(y_t|X_t, y_0,...,y_{t-1})P(X_t|y_0,...,y_{t-1})}{P(y_t|y_0,...,y_{t-1})}$ 

**Bayes rule** 

• Correction involves computing  $P(X_t|y_0,...,y_t)$ given predicted value  $P(X_t|y_0,...,y_{t-1})$  $P(X_t | y_0, \dots, y_t)$  $P(y_t | X_t, y_0, \dots, y_{t-1}) P(X_t | y_0, \dots, y_{t-1})$  $P(y_t | y_0, \dots, y_{t-1})$  $= \frac{P(y_t \mid X_t)P(X_t \mid y_0, \dots, y_{t-1})}{P(y_t \mid y_0, \dots, y_{t-1})}$ 

Independence assumption (observation  $y_t$  depends only on state  $X_t$ )

• Correction involves computing  $P(X_t|y_0,...,y_t)$ given predicted value  $P(X_t|y_0,...,y_{t-1})$  $P(X_t | y_0, \dots, y_t)$  $P(y_t | X_t, y_0, \dots, y_{t-1}) P(X_t | y_0, \dots, y_{t-1})$  $P(y_t | y_0, \dots, y_{t-1})$  $= \frac{P(y_t \mid X_t)P(X_t \mid y_0, \dots, y_{t-1})}{P(y_t \mid y_0, \dots, y_{t-1})}$  $P(y_t \mid X_t)P(X_t \mid y_0, \dots, y_{t-1})$  $-\frac{1}{\int P(y_t \mid X_t) P(X_t \mid y_0, ..., y_{t-1}) dX_t}$ Conditioning on  $X_t$ 

• Correction involves computing  $P(X_t|y_0,...,y_t)$ given predicted value  $P(X_t|y_0,...,y_{t-1})$  $P(X_t | y_0, \dots, y_t)$  $P(y_t | X_t, y_0, ..., y_{t-1}) P(X_t | y_0, ..., y_{t-1})$  $P(y_t | y_0, \dots, y_{t-1})$  $P(y_t \mid X_t) P(X_t \mid y_0, \dots, y_{t-1})$  $P(y_t \mid y_0, \dots, y_{t-1})$ observation predicted  $\rightarrow P(y_t \mid X_t) P(X_t \mid y_0, \dots, y_{t-1})$ model estimate  $\int P(y_t \mid X_t) P(X_t \mid y_0, \dots, y_{t-1}) dX_t$ normalization factor

#### Summary: Prediction and correction

• Prediction:

$$P(X_{t} | y_{0}, ..., y_{t-1}) = \int P(X_{t} | X_{t-1}) P(X_{t-1} | y_{0}, ..., y_{t-1}) dX_{t-1}$$
  
dynamics corrected estimate  
model from previous step

• Correction:



## The Kalman filter

- Linear dynamics model: state undergoes linear transformation plus Gaussian noise
- Observation model: measurement is linearly transformed state plus Gaussian noise
- The predicted/corrected state distributions are Gaussian
  - You only need to maintain the mean and covariance
  - The calculations are easy (all the integrals can be done in closed form)

#### Propagation of Gaussian densities



#### Propagation of general densities



### Factored sampling



• Represent the state distribution non-parametrically

- Prediction: Sample points from prior density for the state, P(X)
- Correction: Weight the samples according to P(Y|X)

$$P(X_{t} | y_{0},..., y_{t}) = \frac{P(y_{t} | X_{t})P(X_{t} | y_{0},..., y_{t-1})}{\int P(y_{t} | X_{t})P(X_{t} | y_{0},..., y_{t-1})dX_{t}}$$

M. Isard and A. Blake, <u>CONDENSATION -- conditional density propagation for</u> <u>visual tracking</u>, IJCV 29(1):5-28, 1998

## Particle filtering



Start with weighted samples from previous time step

Sample and shift according to dynamics model

Spread due to randomness; this is predicted density  $P(X_t|Y_{t-1})$ 

Weight the samples according to observation density

Arrive at corrected density estimate  $P(X_t|Y_t)$ 

M. Isard and A. Blake, <u>CONDENSATION -- conditional density propagation for</u> <u>visual tracking</u>, IJCV 29(1):5-28, 1998

#### Particle filtering results





![](_page_28_Picture_3.jpeg)

http://www.robots.ox.ac.uk/~misard/condensation.html

- Initialization
  - Manual
  - Background subtraction
  - Detection

- Initialization
- Obtaining observation and dynamics model
  - Generative observation model: "render" the state on top of the image and compare
  - Discriminative observation model: classifier or detector score
  - Dynamics model: learn (very difficult) or specify using domain knowledge

- Initialization
- Obtaining observation and dynamics model
- Prediction vs. correction
  - If the dynamics model is too strong, will end up ignoring the data
  - If the observation model is too strong, tracking is reduced to repeated detection

- Initialization
- Obtaining observation and dynamics model
- Prediction vs. correction
- Data association
  - What if we don't know which measurements to associate with which tracks?

- So far, we've assumed the entire measurement to be relevant to determining the state
- In reality, there may be uninformative measurements (clutter) or measurements may belong to different tracked objects
- Data association: task of determining which measurements go with which tracks

![](_page_33_Picture_4.jpeg)

![](_page_33_Picture_5.jpeg)

 Simple strategy: only pay attention to the measurement that is "closest" to the prediction

![](_page_34_Picture_2.jpeg)

Simple strategy: only pay attention to the measurement that is "closest" to the prediction

![](_page_35_Picture_2.jpeg)

Doesn't always work...

- Simple strategy: only pay attention to the measurement that is "closest" to the prediction
- More sophisticated strategy: keep track of multiple state/observation hypotheses
  - Can be done with particle filtering
- This is a general problem in computer vision, there is no easy solution

#### Recall: Generative part-based models

*P(image | object) = P(appearance, shape | object)* 

![](_page_37_Picture_2.jpeg)

![](_page_37_Picture_3.jpeg)

#### Candidate parts

#### Recall: Generative part-based models

P(image | object) = P(appearance, shape | object)= max<sub>h</sub> P(appearance | h, object) p(shape | h, object) p(h | object)

h: assignment of features to parts

![](_page_38_Picture_3.jpeg)

![](_page_38_Picture_4.jpeg)

#### Candidate parts

- Initialization
- Obtaining observation and dynamics model
- Prediction vs. correction
- Data association
- Drift
  - Errors caused by dynamical model, observation model, and data association tend to accumulate over time

## Drift

![](_page_40_Picture_1.jpeg)

![](_page_40_Picture_2.jpeg)

![](_page_40_Picture_3.jpeg)

## Tracking people by learning their appearance

- Person model = appearance + structure (+ dynamics)
- Structure and dynamics are generic, appearance is person-specific
- Trying to acquire an appearance model "on the fly" can lead to drift
- Instead, can use the whole sequence to initialize the appearance model and then keep it fixed while tracking
- Given strong structure and appearance models, tracking can essentially be done by repeated detection (with some smoothing)

### Tracking people by learning their appearance

![](_page_42_Picture_1.jpeg)

# Pictorial structure model

Fischler and Elschlager(73), Felzenszwalb and Huttenlocher(00)

![](_page_43_Figure_2.jpeg)

### Bottom-up initialization: Clustering

![](_page_44_Figure_1.jpeg)

## Top-down initialization: Exploit "easy" poses

![](_page_45_Picture_1.jpeg)

#### **Example results**

![](_page_46_Picture_1.jpeg)

http://www.ics.uci.edu/~dramanan/papers/pose/index.html