
Bag-of-features models

Many slides adapted from Fei-Fei Li, Rob Fergus, and Antonio Torralba



Overview: Bag-of-features models
• Origins and motivation
• Image representation

• Feature extraction
• Visual vocabularies

• Discriminative methods
• Nearest-neighbor classification
• Distance functions
• Support vector machines
• Kernels

• Generative methods
• Naïve Bayes
• Probabilistic Latent Semantic Analysis

• Extensions: incorporating spatial information



Origin 1: Texture recognition

• Texture is characterized by the repetition of basic elements 
or textons

• For stochastic textures, it is the identity of the textons, not 
their spatial arrangement, that matters

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Origin 1: Texture recognition

Universal texton dictionary

histogram

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; 
Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003



Origin 2: Bag-of-words models

• Orderless document representation: frequencies of words 
from a dictionary  Salton & McGill (1983)
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Bags of features for object recognition

Csurka et al. (2004), Willamowski et al. (2005), Grauman & Darrell (2005), Sivic et al. (2003, 2005)

face, flowers, building

• Works pretty well for image-level classification



Bags of features for object recognition

Caltech6 dataset

bag of features bag of features Parts-and-shape model
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Bag of features: outline
1. Extract features
2. Learn “visual vocabulary”
3. Quantize features using visual vocabulary 
4. Represent images by frequencies of 

“visual words” 



Regular grid
• Vogel & Schiele, 2003
• Fei-Fei & Perona, 2005

1. Feature extraction
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Regular grid
• Vogel & Schiele, 2003
• Fei-Fei & Perona, 2005

Interest point detector
• Csurka et al. 2004
• Fei-Fei & Perona, 2005
• Sivic et al. 2005

Other methods
• Random sampling (Vidal-Naquet & Ullman, 2002)
• Segmentation-based patches (Barnard et al. 2003)

1. Feature extraction



Normalize 
patch

Detect patches
[Mikojaczyk and Schmid ’02]

[Mata, Chum, Urban & Pajdla, ’02] 

[Sivic & Zisserman, ’03]

Compute 
SIFT 

descriptor
[Lowe’99]

Slide credit: Josef Sivic

1. Feature extraction



…

1. Feature extraction



2. Learning the visual vocabulary

…



2. Learning the visual vocabulary

Clustering

…

Slide credit: Josef Sivic



2. Learning the visual vocabulary

Clustering

…

Slide credit: Josef Sivic

Visual vocabulary



K-means clustering
• Want to minimize sum of squared Euclidean 

distances between points xi and their 
nearest cluster centers mk

Algorithm:
• Randomly initialize K cluster centers
• Iterate until convergence:

• Assign each data point to the nearest center
• Recompute each cluster center as the mean of all points 

assigned to it
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From clustering to vector quantization
• Clustering is a common method for learning a 

visual vocabulary or codebook
• Unsupervised learning process
• Each cluster center produced by k-means becomes a 

codevector
• Codebook can be learned on separate training set
• Provided the training set is sufficiently representative, the 

codebook will be “universal”

• The codebook is used for quantizing features
• A vector quantizer takes a feature vector and maps it to the 

index of the nearest codevector in a codebook
• Codebook = visual vocabulary
• Codevector = visual word



Example visual vocabulary

Fei-Fei et al. 2005



Image patch examples of  visual words

Sivic et al. 2005



Visual vocabularies: Issues
• How to choose vocabulary size?

• Too small: visual words not representative of all patches
• Too large: quantization artifacts, overfitting

• Generative or discriminative learning?
• Computational efficiency

• Vocabulary trees 
(Nister & Stewenius, 2006)



3. Image representation

…..
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Image classification
• Given the bag-of-features representations of 

images from different classes, how do we 
learn a model for distinguishing them?
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