Object Recognition: Conceptual Issues

Slides adapted from Fei-Fei Li, Rob Fergus, Antonio Torralba, and K. Grauman



Issues In recognition

The statistical viewpoint

Generative vs. discriminative methods
Model representation

Generalization, bias vs. variance
Supervision

Datasets



Object categorization:
the statistical viewpoint
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Object categorization:
the statistical viewpoint
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 Discriminative methods: model posterior

 Generative methods: model likelihood and prior



Discriminative methods

» Direct modeling of p(zebra|image)
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Generative methods

« Model p(image|zebra) and p(image]|no zebra)

p(image | zebra)

p(image | no zebra)

Low

Middle

High

Middle->Low




Generative vs. discriminative methods

e Generative methods
+ Interpretable
+ Can be learned using images from just a single category

— Sometimes we don’'t need to model the likelihood when
all we want is to make a decision

e Discriminative methods

+ Efficient

+ Often produce better classification rates

— Can be hard to interpret

— Require positive and negative training data



Steps for statistical recognition

* Representation
— How to model an object category

e Learning

— How to find the parameters of the model, given
training data

e Recognition
— How the model is to be used on novel data



Representation

— Generative / discriminative /
hybrid




Representation

— Appearance only or location
and appearance




Representation

— Invariances
 Viewpoint
e |llumination
e Occlusion
e Scale
o Deformation
e Clutter
e efc.




Representation

— Global, sliding window, part-
based
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Learning

— Unclear how to model categories, so we learn
what distinguishes them rather than manually
specify the difference -- hence current interest
in machine learning
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Learning

— Unclear how to model categories, so we learn
what distinguishes them rather than manually
specify the difference -- hence current interest
In machine learning)

— Methods of training: generative vs.
discriminative

— Generalization, overfitting, bias vs. variance



Generalization

« How well does a learned model generalize from
the data it was trained on to a new test set?



Bias-variance tradeoff

* Models with too many
parameters may fit a given
sample better, but have high
variance

e Generalization error Is
due to overfitting
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Bias-variance tradeoff

* Models with too many

parameters may fit a given
sample better, but have high

variance

e Generalization error Is
due to overfitting
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 Models with too few
parameters may not fit a
given sample well because
of high bias

e Generalization error Is
due to underfitting
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Occam’s razor

 Given several models that describe the data
equally well, the simpler one should be
preferred

e There should be some tradeoff between error
and model complexity

— This Is rarely done rigorously, but is a powerful
“rule of thumb”

— Simpler models are often preferred because of
their robustness (= low variance)



Learning

— Unclear how to model categories, so we learn
what distinguishes them rather than manually
specify the difference -- hence current interest
In machine learning)

— Methods of training: generative vs.
discriminative

— Generalization, overfitting, bias vs. variance
— Level of supervision

« Manual segmentation; bounding box; image
labels; noisy labels

» Task-dependent
Contains a motorbike




Spectrum of supervision

Less More

Unsupervised “Weakly” supervised Supervised
\ _/

v
Definition depends on task



What task?

o Classification
— Object present/absent in image
— Background may be correlated with object

e Localization /
Detection

— Localize object within
the frame

— Bounding box or pixel-
level segmentation




Datasets

e Circa 2001: 5 categories, 100s of images per
category

e Circa 2004: 101 categories

 Today: thousands of categories, tens of
thousands of images



Caltech 101 & 256

http://www.vision.caltech.edu/lmage Datasets/Caltech101/
http://www.vision.caltech.edu/lmage Datasets/Caltech256/



http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/

The PASCAL Visual Object
Classes Challenge (2005-2009)

http://pascallin.ecs.soton.ac.uk/challenges/VOC/

2008 Challenge classes:

Person: person

Animal: bird, cat, cow, dog, horse, sheep

Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train
Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor



http://www.pascal-network.org/challenges/VOC/voc2007/examples/aeroplane_03.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/bicycle_08.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/bird_07.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/boat_02.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/bottle_05.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/bus_01.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/car_01.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/cat_02.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/chair_02.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/cow_02.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/diningtable_05.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/dog_08.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/horse_07.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/motorbike_04.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/person_06.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/pottedplant_03.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/sheep_07.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/sofa_03.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/train_05.jpg
http://www.pascal-network.org/challenges/VOC/voc2007/examples/tvmonitor_01.jpg
http://pascallin.ecs.soton.ac.uk/challenges/VOC/

The PASCAL Visual Object
Classes Challenge (2005-2009)

http://pascallin.ecs.soton.ac.uk/challenges/VOC/

« Main competitions

— Classification: For each of the twenty classes,
predicting presence/absence of an example of that
class in the test image

— Detection: Predicting the bounding box and label of
each object from the twenty target classes in the test
Image


http://pascallin.ecs.soton.ac.uk/challenges/VOC/

The PASCAL Visual Object
Classes Challenge (2005-2009)

http://pascallin.ecs.soton.ac.uk/challenges/VOC/

« “Taster” challenges

— Segmentation:
Generating pixel-wise
segmentations giving
the class of the object
visible at each pixel, or
"background" otherwise

— Person layout:
Predicting the bounding
box and label of each
part of a person (head,
hands, feet)



http://pascallin.ecs.soton.ac.uk/challenges/VOC/

Lotus Hill Research Institute image
corpus

http://www.imageparsing.com/
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Fig_—z_,'lll‘u 5: Two examples of the parse trees (cat and car) in the Lotus Hill Research Institute image corpus. From [87].

Z.Y. Yao, X. Yang, and S.C. Zhu, 2007


http://www.imageparsing.com/

Labeling with games

http://www.gwap.com/gwap/
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Phayer 1 guesses: purse Player 2 guesses: handbag
Player 1 guesses: bag

Player 1 guasses: brown
Player 2 guesses: purse

Success! Agreamenton “purse” || Success! Agreement on “purse”

Figure 1. Partners agreeing on animage in the ESP Game. Neither player can see the

other’s quesses.
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Figure 2. Peekaboom. “Peek” tries ta guess the word associated with animage slowly
revealed by “Boom.”

L. von Ahn, L. Dabbish, 2004; L. von Ahn, R. Liu and M. Blum, 2006


http://www.gwap.com/gwap/

LabelMe

http://labelme.csail.mit.edu/
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Pleaze contact us if you find any bugs or igm (W_h\L}
have any suggestions. )
Show me another image With your help, there are.
91348 Iabelled abjects in the database
(more stats)

>

Label as many objects and regions as you can in this image

Instructions (Get more help)

Edit/delete object

Use your mouse to click around the
boundary of some objects in this
image. You will then be asked to enter
the name of the object (examples: car,
window).
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Russell, Torralba, Murphy, Freeman, 2008


http://labelme.csail.mit.edu/

O Million Tiny Images



http://people.csail.mit.edu/torralba/tinyimages/

Dataset iIssues

How large Is the degree of intra-class variability?
How “confusable” are the classes?

s there bias introduced by the background? l.e.,
can we “cheat” just by looking at the background
and not the object?







Summary

 Recognition is the “grand challenge” of computer
vision
e History
— Geometric methods
— Appearance-based methods
— Sliding window approaches
— Local features
— Parts-and-shape approaches
— Bag-of-features approaches

e |Ssues
— Generative vs. discriminative models

— Supervised vs. unsupervised methods
— Tasks, datasets
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