
Structure from motion



Multiple-view geometry questions
• Scene geometry (structure): Given 2D point 

matches in two or more images, where are the 
corresponding points in 3D?

• Correspondence (stereo matching): Given a 
point in just one image, how does it constrain the 
position of the corresponding point in another 
image?

• Camera geometry (motion): Given a set of 
corresponding points in two or more images, what 
are the camera matrices for these views?



Structure from motion
• Given: m images of n fixed 3D points 

xij = Pi Xj , i = 1, … , m,    j = 1, … , n  

• Problem: estimate m projection matrices Pi and 
n 3D points Xj from the mn correspondences xij
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Structure from motion ambiguity
• If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 
factor of 1/k, the projections of the scene points in the 
image remain exactly the same:

It is impossible to recover the absolute scale of the scene!
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Structure from motion ambiguity
• If we scale the entire scene by some factor k and, at 

the same time, scale the camera matrices by the 
factor of 1/k, the projections of the scene points in the 
image remain exactly the same 

• More generally: if we transform the scene using a 
transformation Q and apply the inverse 
transformation to the camera matrices, then the 
images do not change
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Projective ambiguity
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Projective ambiguity



Affine ambiguity
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Affine ambiguity



Similarity ambiguity
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Similarity ambiguity



Hierarchy of 3D transformations
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Preserves intersection and 
tangency

Preserves parallellism, 
volume ratios

Preserves angles, ratios of 
length
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• With no constraints on the camera calibration matrix or on the 
scene, we get a projective reconstruction

• Need additional information to upgrade the reconstruction to 
affine, similarity, or Euclidean



Structure from motion
• Let’s start with affine cameras (the math is easier)

center at
infinity



Recall: Orthographic Projection
Special case of perspective projection

• Distance from center of projection to image plane is infinite

• Projection matrix:

Image World

Slide by Steve Seitz



Orthographic Projection

Parallel Projection

Affine cameras



Affine cameras
• A general affine camera combines the effects of an 

affine transformation of the 3D space, orthographic 
projection, and an affine transformation of the image:

• Affine projection is a linear mapping + translation in 
inhomogeneous coordinates
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Affine structure from motion
• Given: m images of n fixed 3D points:

xij = Ai Xj + bi ,     i = 1,… , m,  j = 1, … , n  

• Problem: use the mn correspondences xij  to estimate 
m projection matrices Ai and translation vectors bi, 
and n points Xj

• The reconstruction is defined up to an arbitrary affine 
transformation Q (12 degrees of freedom):

• We have 2mn knowns and 8m + 3n unknowns (minus 
12 dof for affine ambiguity)

• Thus, we must have 2mn >= 8m + 3n – 12
• For two views, we need four point correspondences
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Affine structure from motion
• Centering: subtract the centroid of the image points

• For simplicity, assume that the origin of the world 
coordinate system is at the centroid of the 3D points

• After centering, each normalized point xij is related to 
the 3D point Xi by
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Affine structure from motion
• Let’s create a 2m × n data (measurement) matrix:
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C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 
A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf


Affine structure from motion
• Let’s create a 2m × n data (measurement) matrix:
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The measurement matrix D = MS must have rank 3!

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 
A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf


Factorizing the measurement matrix

Source: M. Hebert



Factorizing the measurement matrix
• Singular value decomposition of D:

Source: M. Hebert



Factorizing the measurement matrix
• Singular value decomposition of D:

Source: M. Hebert



Factorizing the measurement matrix
• Obtaining a factorization from SVD:

Source: M. Hebert



Factorizing the measurement matrix
• Obtaining a factorization from SVD:

Source: M. Hebert

This decomposition minimizes
|D-MS|2



Affine ambiguity

• The decomposition is not unique. We get the same D 
by using any 3×3 matrix C and applying the 
transformations M → MC, S →C-1S

• That is because we have only an affine transformation 
and we have not enforced any Euclidean constraints 
(like forcing the image axes to be perpendicular, for 
example)

Source: M. Hebert



• Orthographic: image axes are perpendicular and 
scale is 1

• This translates into 3m equations in L = CCT :
Ai L Ai

T = Id, i = 1, …, m

• Solve for L
• Recover C from L by Cholesky decomposition: L = CCT

• Update M and S: M = MC, S = C-1S

Eliminating the affine ambiguity

x

Xa1

a2

a1 · a2 = 0

|a1|2 = |a2|2 = 1

Source: M. Hebert



Algorithm summary
• Given: m images and n features xij

• For each image i, center the feature coordinates
• Construct a 2m × n measurement matrix D:

• Column j contains the projection of point j in all views
• Row i contains one coordinate of the projections of all the n 

points in image i

• Factorize D:
• Compute SVD: D = U W VT

• Create U3 by taking the first 3 columns of U
• Create V3 by taking the first 3 columns of V
• Create W3 by taking the upper left 3 × 3 block of W

• Create the motion and shape matrices:
• M = U3W3

½  and S = W3
½ V3

T (or M = U3 and S = W3V3
T)

• Eliminate affine ambiguity
Source: M. Hebert



Reconstruction results

C. Tomasi and T. Kanade. Shape and motion from image streams under orthography: 
A factorization method. IJCV, 9(2):137-154, November 1992. 

http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf
http://www.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape and motion from image streams under orthography.pdf


Dealing with missing data
• So far, we have assumed that all points are visible in 

all views
• In reality, the measurement matrix typically looks 

something like this:

cameras

points



Dealing with missing data
• Possible solution: decompose matrix into dense sub-

blocks, factorize each sub-block, and fuse the results
• Finding dense maximal sub-blocks of the matrix is NP-

complete (equivalent to finding maximal cliques in a graph)

• Incremental bilinear refinement

(1) Perform 
factorization on a 
dense sub-block

(2) Solve for a new 
3D point visible by 
at least two known 
cameras (linear 
least squares)

(3) Solve for a new 
camera that sees at 
least three known 
3D points (linear 
least squares)

F. Rothganger, S. Lazebnik, C. Schmid, and J. Ponce. Segmenting, Modeling, and 
Matching Video Clips Containing Multiple Moving Objects. PAMI 2007.

http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/pami06.pdf


Projective structure from motion
• Given: m images of n fixed 3D points 

zij xij = Pi Xj , i = 1,… , m,    j = 1, … , n

• Problem: estimate m projection matrices Pi and n 3D 
points Xj from the mn correspondences xij
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Projective structure from motion
• Given: m images of n fixed 3D points 

zij xij = Pi Xj , i = 1,… , m,    j = 1, … , n

• Problem: estimate m projection matrices Pi and n 3D 
points Xj from the mn correspondences xij

• With no calibration info, cameras and points can only 
be recovered up to a 4x4 projective transformation Q:

X → QX, P → PQ-1

• We can solve for structure and motion when 
2mn >= 11m +3n – 15

• For two cameras, at least 7 points are needed



Projective SFM: Two-camera case
• Compute fundamental matrix F between the two views
• First camera matrix: [I|0]
• Second camera matrix: [A|b]
• Then

bAxbX0|IAx +=+=′′ zz ][

bAxbx ×=×′′ zz

xbAxxbx ′⋅×=′⋅×′′ )()( zz

0][T =′ × Axbx

AbF ][ ×=

XbAxX0|Ix ]|[,][ =′′= zz

b: epipole (FTb = 0),    A = –[b×]F

F&P sec. 13.3.1



Projective factorization

• If we knew the depths z, we could factorize D to 
estimate M and S

• If we knew M and S, we could solve for z
• Solution: iterative approach (alternate between above 

two steps)
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D = MS has rank 4



Sequential structure from motion
•Initialize motion from two 
images using fundamental 
matrix
•Initialize structure
•For each additional view:

• Determine projection matrix 
of new camera using all the 
known 3D points that are 
visible in its image –
calibration ca

m
er

as

points



Sequential structure from motion
•Initialize motion from two 
images using fundamental 
matrix
•Initialize structure
•For each additional view:

• Determine projection matrix 
of new camera using all the 
known 3D points that are 
visible in its image –
calibration

• Refine and extend structure: 
compute new 3D points, 
re-optimize existing points 
that are also seen by this 
camera – triangulation 
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Sequential structure from motion
•Initialize motion from two 
images using fundamental 
matrix
•Initialize structure
•For each additional view:

• Determine projection matrix 
of new camera using all the 
known 3D points that are 
visible in its image –
calibration

• Refine and extend structure: 
compute new 3D points, 
re-optimize existing points 
that are also seen by this 
camera – triangulation 

•Refine structure and motion: 
bundle adjustment
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Bundle adjustment
• Non-linear method for refining structure and motion
• Minimizing reprojection error
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Self-calibration
• Self-calibration (auto-calibration) is the process of 

determining intrinsic camera parameters directly from 
uncalibrated images

• For example, when the images are acquired by a 
single moving camera, we can use the constraint that 
the intrinsic parameter matrix remains fixed for all the 
images
• Compute initial projective reconstruction and find 3D 

projective transformation matrix Q such that all camera 
matrices are in the form Pi = K [Ri | ti]

• Can use constraints on the form of the calibration 
matrix: zero skew



Summary: Structure from motion
• Ambiguity
• Affine structure from motion: factorization
• Dealing with missing data
• Projective structure from motion: two views
• Projective structure from motion: iterative 

factorization
• Bundle adjustment
• Self-calibration



Summary: 3D geometric vision
• Single-view geometry

• The pinhole camera model
– Variation: orthographic projection

• The perspective projection matrix
• Intrinsic parameters
• Extrinsic parameters
• Calibration

• Multiple-view geometry
• Triangulation
• The epipolar constraint

– Essential matrix and fundamental matrix
• Stereo 

– Binocular, multi-view
• Structure from motion

– Reconstruction ambiguity
– Affine SFM
– Projective SFM
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