Stereo

Many slides adapted from Steve Seitz

Binocular stereo

- Given a calibrated binocular stereo pair, fuse it to produce a depth image
image 1

image 2

Dense depth map

Binocular stereo

- Given a calibrated binocular stereo pair, fuse it to produce a depth image
- Humans can do it

Stereograms: Invented by Sir Charles Wheatstone, 1838

Binocular stereo

- Given a calibrated binocular stereo pair, fuse it to produce a depth image
- Humans can do it

Autostereograms: www.magiceye.com

Binocular stereo

- Given a calibrated binocular stereo pair, fuse it to produce a depth image
- Humans can do it

Autostereograms: www.magiceye.com

Basic stereo matching algorithm

- For each pixel in the first image
- Find corresponding epipolar line in the right image
- Examine all pixels on the epipolar line and pick the best match
- Triangulate the matches to get depth information
- Simplest case: epipolar lines are scanlines
- When does this happen?

Simplest Case: Parallel images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same

Simplest Case: Parallel images

- Image planes of cameras are parallel to each other and to the baseline
- Camera centers are at same height
- Focal lengths are the same
- Then, epipolar lines fall along the horizontal scan lines of the images

Essential matrix for parallel images

Epipolar constraint:

$$
\begin{array}{rl}
x^{T} E x^{\prime}=0, & E=\left[t_{\star}\right] R \\
R=I & t=(T, 0,0)
\end{array}
$$

$$
E=\left[t_{\star}\right] R=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right]
$$

$$
\left[a_{x}\right]=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]
$$

Essential matrix for parallel images

Epipolar constraint:

$$
\begin{array}{rl}
x^{T} E x^{\prime}=0, & E=\left[t_{\star}\right] R \\
R=I & t=(T, 0,0)
\end{array}
$$

$$
E=\left[t_{\star}\right] R=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right]
$$

$$
\left(\begin{array}{lll}
u & v & 1
\end{array}\right)\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -T \\
0 & T & 0
\end{array}\right]\left(\begin{array}{l}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right)=0
$$

$$
\left(\begin{array}{lll}
u & v & 1
\end{array}\right)\left(\begin{array}{c}
0 \\
-T \\
T v^{\prime}
\end{array}\right)=0 \quad T v=T v^{\prime}
$$

The y-coordinates of corresponding points are the same!

Depth from disparity

$$
\text { disparity }=x-x^{\prime}=\frac{B \cdot f}{z}
$$

Disparity is inversely proportional to depth!

Stereo image rectification

Stereo image rectification

- reproject image planes onto a common plane parallel to the line between optical centers
- pixel motion is horizontal after this transformation
- two homographies (3×3 transform), one for each input image reprojection
> C. Loop and Z. Zhang. Computing Rectifying Homographies for
 Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.

Rectification example

Basic stereo matching algorithm

- If necessary, rectify the two stereo images to transform epipolar lines into scanlines
- For each pixel x in the first image
- Find corresponding epipolar scanline in the right image
- Examine all pixels on the scanline and pick the best match x^{\prime}
- Compute disparity $x-x^{\prime}$ and set depth $(x)=1 /\left(x-x^{\prime}\right)$

Correspondence problem

Multiple matching hypotheses satisfy the epipolar constraint, but which one is correct?

Correspondence problem

- Let's make some assumptions to simplify the matching problem
- The baseline is relatively small (compared to the depth of scene points)
- Then most scene points are visible in both views
- Also, matching regions are similar in appearance

Correspondence problem

- Let's make some assumptions to simplify the matching problem
- The baseline is relatively small (compared to the depth of scene points)
- Then most scene points are visible in both views
- Also, matching regions are similar in appearance

Correspondence search with similarity constraint

- Slide a window along the right scanline and compare contents of that window with the reference window in the left image
- Matching cost: SSD or normalized correlation

Correspondence search with similarity constraint

Correspondence search with similarity constraint

Norm. corr

Effect of window size

$\mathrm{W}=3$
$W=20$

- Smaller window
+ More detail
- More noise
- Larger window
+ Smoother disparity maps
- Less detail

The similarity constraint

- Corresponding regions in two images should be similar in appearance
- ...and non-corresponding regions should be different
- When will the similarity constraint fail?

Limitations of similarity constraint

Textureless surfaces

Occlusions, repetition

Non-Lambertian surfaces, specularities

Results with window search

Data

Window-based matching
Ground truth

Better methods exist...

Graph cuts

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

For the latest and greatest: http://www.middlebury.edu/stereo/

How can we improve window-based matching?

- The similarity constraint is local (each reference window is matched independently)
- Need to enforce non-local correspondence constraints

Non-local constraints

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image

Non-local constraints

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image
- Ordering
- Corresponding points should be in the same order in both views

Non-local constraints

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image
- Ordering
- Corresponding points should be in the same order in both views

Ordering constraint doesn't hold

Non-local constraints

- Uniqueness
- For any point in one image, there should be at most one matching point in the other image
- Ordering
- Corresponding points should be in the same order in both views
- Smoothness
- We expect disparity values to change slowly (for the most part)

Scanline stereo

- Try to coherently match pixels on the entire scanline
- Different scanlines are still optimized independently

"Shortest paths" for scan-line stereo

Can be implemented with dynamic programming
Ohta \& Kanade ’85, Cox et al. ‘96

Coherent stereo on 2D grid

- Scanline stereo generates streaking artifacts

- Can't use dynamic programming to find spatially coherent disparities/ correspondences on a 2D grid

Stereo matching as energy minimization

$$
\begin{gathered}
E=\alpha E_{\text {data }}\left(I_{1}, I_{2}, D\right)+\beta E_{\text {smooth }}(D) \\
E_{\text {data }}=\sum_{i}\left(W_{1}(i)-W_{2}(i+D(i))\right)^{2} \quad E_{\text {smooth }}=\sum_{\text {neighbors } i, j} \rho(D(i)-D(j))
\end{gathered}
$$

- Energy functions of this form can be minimized using graph cuts
Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001

Stereo matching as energy minimization

- Probabilistic interpretation: we want to find a Maximum A Posteriori (MAP) estimate of disparity image D:

$$
\begin{gathered}
P\left(D \mid I_{1}, I_{2}\right) \propto P\left(I_{1}, I_{2} \mid D\right) P(D) \\
-\log P\left(D \mid I_{1}, I_{2}\right) \propto-\log P\left(I_{1}, I_{2} \mid D\right)-\log P(D) \\
E=\alpha E_{\text {data }}\left(I_{1}, I_{2}, D\right)+\beta E_{\text {smooth }}(D)
\end{gathered}
$$

The role of the baseline

Small Baseline

Large Baseline

Small baseline: large depth error
Large baseline: difficult search problem

Problem for wide baselines: Foreshortening

- Matching with fixed-size windows will fail!
- Possible solution: adaptively vary window size
- Another solution: model-based stereo

Model-based stereo

Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and Rendering Architecture from Photographs. SIGGRAPH 1996.

Model-based stereo

key image

offset image

Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and Rendering Architecture from Photographs. SIGGRAPH 1996.

Model-based stereo

key image

warped offset image

Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and Rendering Architecture from Photographs. SIGGRAPH 1996.

Active stereo with structured light

- Project "structured" light patterns onto the object
- Simplifies the correspondence problem
- Allows us to use only one camera

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

Active stereo with structured light

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

Laser scanning

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/

Optical triangulation

- Project a single stripe of laser light
- Scan it across the surface of the object
- This is a very precise version of structured light scanning

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Laser scanned models

1.0 mm resolution (56 million triangles)

The Digital Michelangelo Project, Levoy et al.

Aligning range images

- A single range scan is not sufficient to describe a complex surface
- Need techniques to register multiple range images

B. Curless and M. Levoy, A Volumetric Method for Building Complex Models from Range Images, SIGGRAPH 1996

Aligning range images

- A single range scan is not sufficient to describe a complex surface
- Need techniques to register multiple range images
... which brings us to multi-view stereo

