
Stereo

Many slides adapted from Steve Seitz



Binocular stereo
• Given a calibrated binocular stereo pair, fuse it to 

produce a depth image
image 1 image 2

Dense depth map
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Basic stereo matching algorithm

• For each pixel in the first image
• Find corresponding epipolar line in the right image
• Examine all pixels on the epipolar line and pick the best match
• Triangulate the matches to get depth information

• Simplest case: epipolar lines are scanlines
• When does this happen?



Simplest Case: Parallel images
• Image planes of cameras 

are parallel to each other 
and to the baseline

• Camera centers are at same 
height

• Focal lengths are the same



Simplest Case: Parallel images
• Image planes of cameras 

are parallel to each other 
and to the baseline

• Camera centers are at same 
height

• Focal lengths are the same
• Then, epipolar lines fall 

along the horizontal scan 
lines of the images



Essential matrix for parallel images

RtExExT ][,0 ×==′

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−== ×

00
00

000
][

T
TRtE

R = I t = (T, 0, 0)

Epipolar constraint:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=×

0
0

0
][

xy

xz

yz

aa
aa

aa
a

t

x

x’



Essential matrix for parallel images
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Depth from disparity
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Disparity is inversely proportional to depth!



Stereo image rectification



Stereo image rectification

• reproject image planes onto a common
plane parallel to the line between optical centers

• pixel motion is horizontal after this transformation
• two homographies (3x3 transform), one for each 

input image reprojection
C. Loop and Z. Zhang. Computing Rectifying Homographies for 
Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 
1999.

http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
http://research.microsoft.com/~zhang/Papers/TR99-21.pdf


Rectification example



Basic stereo matching algorithm

• If necessary, rectify the two stereo images to transform 
epipolar lines into scanlines

• For each pixel x in the first image
• Find corresponding epipolar scanline in the right image
• Examine all pixels on the scanline and pick the best match x’
• Compute disparity x-x’ and set depth(x) = 1/(x-x’)



Correspondence problem

Multiple matching hypotheses satisfy the epipolar 
constraint, but which one is correct?



Correspondence problem
• Let’s make some assumptions to simplify the 

matching problem
• The baseline is relatively small (compared to the depth of 

scene points)
• Then most scene points are visible in both views
• Also, matching regions are similar in appearance
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Matching cost

disparity

Left Right

scanline

Correspondence search with similarity constraint

• Slide a window along the right scanline and compare 
contents of that window with the reference window in 
the left image

• Matching cost: SSD or normalized correlation



Left Right

scanline

Correspondence search with similarity constraint

SSD



Left Right

scanline

Correspondence search with similarity constraint

Norm. corr



Effect of window size

• Smaller window
+ More detail
– More noise

• Larger window
+ Smoother disparity maps
– Less detail

W = 3 W = 20



The similarity constraint

• Corresponding regions in two images should be similar in 
appearance 

• …and non-corresponding regions should be different
• When will the similarity constraint fail?



Limitations of similarity constraint

Textureless surfaces Occlusions, repetition

Non-Lambertian surfaces, specularities



Results with window search

Window-based matching Ground truth

Data



Better methods exist...

Graph cuts Ground truth

For the latest and greatest:  http://www.middlebury.edu/stereo/

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy 
Minimization via Graph Cuts,  PAMI 2001

http://www.middlebury.edu/stereo/
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf


How can we improve window-based matching?
• The similarity constraint is local (each reference 

window is matched independently)
• Need to enforce non-local correspondence 

constraints



Non-local constraints
• Uniqueness 

• For any point in one image, there should be at most one 
matching point in the other image
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Non-local constraints
• Uniqueness 

• For any point in one image, there should be at most one 
matching point in the other image

• Ordering
• Corresponding points should be in the same order in both views

• Smoothness
• We expect disparity values to change slowly (for the most part)



Scanline stereo
• Try to coherently match pixels on the entire scanline
• Different scanlines are still optimized independently

Left image Right image



“Shortest paths” for scan-line stereo
Left image

Right image

Can be implemented with dynamic programming
Ohta & Kanade ’85, Cox et al. ‘96
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Slide credit: Y. Boykov



Coherent stereo on 2D grid
• Scanline stereo generates streaking artifacts

• Can’t use dynamic programming to find spatially 
coherent disparities/ correspondences on a 2D grid



Stereo matching as energy minimization

I1 I2 D

• Energy functions of this form can be minimized using 
graph cuts

Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization 
via Graph Cuts,  PAMI 2001

W1(i) W2(i+D(i)) D(i)
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http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf
http://www.csd.uwo.ca/~yuri/Papers/pami01.pdf


Stereo matching as energy minimization

• Probabilistic interpretation: we want to find a Maximum A 
Posteriori (MAP) estimate of disparity image D:
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The role of the baseline

Small baseline:  large depth error
Large baseline:  difficult search problem

Large BaselineSmall Baseline

Source: S. Seitz



Problem for wide baselines: Foreshortening

• Matching with fixed-size windows will fail!
• Possible solution: adaptively vary window size
• Another solution: model-based stereo



Model-based stereo

Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and Rendering 
Architecture from Photographs. SIGGRAPH 1996. 

http://www.debevec.org/Research/
http://www.debevec.org/Research/


Model-based stereo

key image offset image

Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and Rendering 
Architecture from Photographs. SIGGRAPH 1996. 

http://www.debevec.org/Research/
http://www.debevec.org/Research/


Model-based stereo

key image warped offset image

displacement map

Paul E. Debevec, Camillo J. Taylor, and Jitendra Malik. Modeling and Rendering 
Architecture from Photographs. SIGGRAPH 1996. 

http://www.debevec.org/Research/
http://www.debevec.org/Research/


Active stereo with structured light

• Project “structured” light patterns onto the object
• Simplifies the correspondence problem
• Allows us to use only one camera

camera 

projector

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured 
Light and Multi-pass Dynamic Programming. 3DPVT 2002

http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/


Active stereo with structured light

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color 
Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

http://grail.cs.washington.edu/projects/moscan/
http://grail.cs.washington.edu/projects/moscan/


Laser scanning

Optical triangulation
• Project a single stripe of laser light
• Scan it across the surface of the object
• This is a very precise version of structured light scanning

Direction of travel

Object

CCD

CCD image plane

Laser
Cylindrical lens

Laser sheet

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/

Source: S. Seitz

http://graphics.stanford.edu/projects/mich/


Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz
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Laser scanned models

The Digital Michelangelo Project, Levoy et al.

Source: S. Seitz

1.0 mm resolution (56 million triangles) 



Aligning range images
• A single range scan is not sufficient to describe a 

complex surface
• Need techniques to register multiple range images

B. Curless and M. Levoy, A Volumetric Method for Building Complex Models from 
Range Images, SIGGRAPH 1996

http://graphics.stanford.edu/papers/volrange/
http://graphics.stanford.edu/papers/volrange/


Aligning range images
• A single range scan is not sufficient to describe a 

complex surface
• Need techniques to register multiple range images

… which brings us to multi-view stereo
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