
Two-view geometry



• Epipolar Plane – plane containing baseline (1D family)
• Epipoles 
= intersections of baseline with image planes 
= projections of the other camera center
= vanishing points of camera motion direction
• Epipolar Lines - intersections of epipolar plane with image
planes (always come in corresponding pairs)

• Baseline – line connecting the two camera centers
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Example: Converging cameras



Example: Motion parallel to image plane
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Example: Forward motion

Epipole has same coordinates 
in both images.
Points move along lines 
radiating from e: “Focus of 
expansion”



Epipolar constraint

• If we observe a point x in one image, where 
can the corresponding point x’ be in the other 
image?
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• Potential matches for x have to lie on the corresponding 
epipolar line l’.

• Potential matches for x’ have to lie on the corresponding 
epipolar line l.
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Epipolar constraint example
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Epipolar constraint: Calibrated case

• Assume that the intrinsic and extrinsic parameters of the 
cameras are known

• We can multiply the projection matrix of each camera (and the 
image points) by the inverse of the calibration matrix to get 
normalized image coordinates

• We can also set the global coordinate system to the coordinate 
system of the first camera
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Epipolar constraint: Calibrated case

Camera matrix: [I|0]
X = (u, v, w, 1)T

x = (u, v, w)T

Camera matrix: [RT | –RTt]
Vector x’ in second coord. 
system has coordinates 
Rx’ in the first one

R
t

The vectors x, t, and Rx’ are coplanar 

= RX’ + t



Essential Matrix
(Longuet-Higgins, 1981)

Epipolar constraint: Calibrated case
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The vectors x, t, and Rx’ are coplanar 
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Epipolar constraint: Calibrated case

• E x’ is the epipolar line associated with x’ (l = E x’)
• ETx is the epipolar line associated with x (l’ = ETx)
• E e’ = 0   and   ETe = 0
• E is singular (rank two)
• E has five degrees of freedom 
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Epipolar constraint: Uncalibrated case

• The calibration matrices K and K’ of the two 
cameras are unknown

• We can write the epipolar constraint in terms 
of unknown normalized coordinates:
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Epipolar constraint: Uncalibrated case
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Fundamental Matrix
(Faugeras and Luong, 1992)
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Epipolar constraint: Uncalibrated case

0ˆˆ =′xExT 1with0 −− ′==′ KEKFxFx TT

• F x’ is the epipolar line associated with x’ (l = F x’)
• FTx is the epipolar line associated with x (l’ = FTx)
• F e’ = 0   and   FTe = 0
• F is singular (rank two)
• F has seven degrees of freedom
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The eight-point algorithm

x = (u, v, 1)T,   x’ = (u’, v’, 1)T

Minimize:

under the constraint
|F|2 = 1
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The eight-point algorithm

• Meaning of error

sum of Euclidean distances between points xi 
and epipolar lines Fx’i (or points x’i and 
epipolar lines FTxi) multiplied by a scale factor

• Nonlinear approach: minimize
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Problem with eight-point algorithm



Problem with eight-point algorithm

Poor numerical conditioning
Can be fixed by rescaling the data



The normalized eight-point algorithm

• Center the image data at the origin, and scale it so 
the mean squared distance between the origin and 
the data points is 2 pixels

• Use the eight-point algorithm to compute F from the 
normalized points

• Enforce the rank-2 constraint (for example, take SVD 
of F and throw out the smallest singular value)

• Transform fundamental matrix back to original units: 
if T and T’ are the normalizing transformations in the 
two images, than the fundamental matrix in original 
coordinates is TT F T’

(Hartley, 1995)



Comparison of estimation algorithms

8-point Normalized 8-point Nonlinear least squares

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel

Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel



From epipolar geometry to camera calibration

• Estimating the fundamental matrix is known 
as “weak calibration”

• If we know the calibration matrices of the two 
cameras, we can estimate the essential 
matrix: E = KTFK’

• The essential matrix gives us the relative 
rotation and translation between the cameras, 
or their extrinsic parameters



Assignment 3 (due March 17)
http://www.cs.unc.edu/~lazebnik/spring09/assignment3.html

http://www.cs.unc.edu/~lazebnik/spring09/assignment3.html
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