Two-view geometry

Epipolar geometry

- Baseline - line connecting the two camera centers
- Epipolar Plane - plane containing baseline (1D family)
- Epipoles
= intersections of baseline with image planes
= projections of the other camera center
= vanishing points of camera motion direction
- Epipolar Lines - intersections of epipolar plane with image planes (always come in corresponding pairs)

Example: Converging cameras

Example: Motion parallel to image plane

Example: Forward motion

Epipole has same coordinates in both images.
Points move along lines radiating from e: "Focus of expansion"

Epipolar constraint

- If we observe a point x in one image, where can the corresponding point x ' be in the other image?

Epipolar constraint

- Potential matches for x have to lie on the corresponding epipolar line l'.
- Potential matches for x ' have to lie on the corresponding epipolar line I.

Epipolar constraint example

Epipolar constraint: Calibrated case

- Assume that the intrinsic and extrinsic parameters of the cameras are known
- We can multiply the projection matrix of each camera (and the image points) by the inverse of the calibration matrix to get normalized image coordinates
- We can also set the global coordinate system to the coordinate system of the first camera

Epipolar constraint: Calibrated case

Camera matrix: [I|0]
$\boldsymbol{X}=(u, v, w, 1)^{T}$
$\boldsymbol{x}=(u, v, w)^{T}$

Camera matrix: $\left[\boldsymbol{R}^{T} \mid-\boldsymbol{R}^{T} \boldsymbol{t}\right]$
Vector x^{\prime} in second coord.
system has coordinates
$\boldsymbol{R} \boldsymbol{x}$ ' in the first one

The vectors x, t, and $R x^{\prime}$ are coplanar

Epipolar constraint: Calibrated case

Essential Matrix
(Longuet-Higgins, 1981)
The vectors x, t, and $R x$ ' are coplanar

Epipolar constraint: Calibrated case

- $E x^{\prime}$ is the epipolar line associated with $x^{\prime}\left(I=E x^{\prime}\right)$
- $E^{\top} x$ is the epipolar line associated with $x\left(l^{\prime}=E^{\top} x\right)$
- $E e^{\prime}=0$ and $E^{\top} e=0$
- E is singular (rank two)
- E has five degrees of freedom

Epipolar constraint: Uncalibrated case

- The calibration matrices K and K^{\prime} of the two cameras are unknown
- We can write the epipolar constraint in terms of unknown normalized coordinates:

$$
\hat{x}^{T} E \hat{x}^{\prime}=0 \quad x=K \hat{x}, \quad x^{\prime}=K^{\prime} \hat{x}^{\prime}
$$

Epipolar constraint: Uncalibrated case

Epipolar constraint: Uncalibrated case

- $F x^{\prime}$ is the epipolar line associated with $x^{\prime}\left(I=F x^{\prime}\right)$
- $F^{\top} x$ is the epipolar line associated with $x\left(l^{\prime}=F^{\top} x\right)$
- $F e^{\prime}=0$ and $F^{\top} e=0$
- F is singular (rank two)
- F has seven degrees of freedom

The eight-point algorithm

$$
\begin{aligned}
& \boldsymbol{x}=(u, v, 1)^{T}, \quad \boldsymbol{x}^{\prime}=\left(u^{\prime}, v^{\prime}, 1\right)^{T} \\
& (u, v, 1)\left(\begin{array}{lll}
F_{11} & F_{12} & F_{13} \\
F_{21} & F_{22} & F_{23} \\
F_{31} & F_{32} & F_{33}
\end{array}\right)\left(\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
1
\end{array}\right)=0 \quad \square\left(u u^{\prime}, u v^{\prime}, u, v u^{\prime}, v v^{\prime}, v, u^{\prime}, v^{\prime}, 1\right)\left(\begin{array}{l}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32} \\
F_{33}
\end{array}\right)=0
\end{aligned}
$$

$$
\left(\begin{array}{cccccccc}
u_{1} u_{1}^{\prime} & u_{1} v_{1}^{\prime} & u_{1} & v_{1} u_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1} & u_{1}^{\prime} & v_{1}^{\prime} \\
u_{2} u_{2}^{\prime} & u_{2} v_{2}^{\prime} & u_{2} & v_{2} u_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2} & u_{2}^{\prime} & v_{2}^{\prime} \\
u_{3} u_{3} & u_{3} v_{3}^{\prime} & u_{3} & v_{3} u_{3}^{\prime} & v_{3} v_{3}^{\prime} & v_{3} & u_{3}^{\prime} & v_{3}^{\prime} \\
u_{4} u_{4}^{\prime} & u_{4} v_{4}^{\prime} & u_{4} & v_{4} u_{4}^{\prime} & v_{4} v_{4}^{\prime} & v_{4} & u_{4}^{\prime} & v_{4}^{\prime} \\
u_{5} u_{5}^{\prime} & u_{5} v_{5}^{\prime} & u_{5} & v_{5} u_{5}^{\prime} & v_{5} v_{5}^{\prime} & v_{5} & u_{5}^{\prime} & v_{5}^{\prime} \\
u_{6} u_{6}^{\prime} & u_{6} v_{6}^{\prime} & u_{6} & v_{6} u_{6}^{\prime} & v_{6} v_{6}^{\prime} & v_{6} & u_{6}^{\prime} & v_{6}^{\prime} \\
u_{7} u_{7}^{\prime} & u_{7} v_{7}^{\prime} & u_{7} & v_{7} u_{7}^{\prime} & v_{7} v_{7}^{\prime} & v_{7} & u_{7}^{\prime} & v_{7}^{\prime} \\
u_{8} u_{8}^{\prime} & u_{8} v_{8}^{\prime} & u_{8} & v_{8} u_{8}^{\prime} & v_{8} v_{8}^{\prime} & v_{8} & u_{8}^{\prime} & v_{8}^{\prime}
\end{array}\right)\left(\begin{array}{c}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32}
\end{array}\right)=-\left(\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Minimize:

$$
\sum_{i=1}^{N}\left(x_{i}^{T} F x_{i}^{\prime}\right)^{2}
$$

under the constraint

$$
|F|^{2}=1
$$

The eight-point algorithm

- Meaning of error $\sum_{i=1}^{N}\left(x_{i}^{T} F x_{i}^{\prime}\right)^{2}$:
sum of Euclidean distances between points x_{i} and epipolar lines $F x_{i}^{\prime}$ (or points x_{i}^{\prime} and epipolar lines $F^{\top} X_{i}$) multiplied by a scale factor
- Nonlinear approach: minimize

$$
\sum_{i=1}^{N}\left[\mathrm{~d}^{2}\left(x_{i}, F x_{i}^{\prime}\right)+\mathrm{d}^{2}\left(x_{i}^{\prime}, F^{T} x_{i}\right)\right]
$$

Problem with eight-point algorithm

$$
\left(\begin{array}{llllllll}
u_{1} u_{1}^{\prime} & u_{1} v_{1}^{\prime} & u_{1} & v_{1} u_{1}^{\prime} & v_{1} v_{1}^{\prime} & v_{1} & u_{1}^{\prime} & v_{1}^{\prime} \\
u_{2} u_{2}^{\prime} & u_{2} v_{2}^{\prime} & u_{2} & v_{2} u_{2}^{\prime} & v_{2} v_{2}^{\prime} & v_{2} & u_{2}^{\prime} & v_{2}^{\prime} \\
u_{3} u_{3}^{\prime} & u_{3} v_{3}^{\prime} & u_{3} & v_{3} u_{3}^{\prime} & v_{3} v_{3}^{\prime} & v_{3} & u_{3}^{\prime} & v_{3}^{\prime} \\
u_{4} u_{4}^{\prime} & u_{4} v_{4}^{\prime} & u_{4} & v_{4} u_{4}^{\prime} & v_{4} v_{4}^{\prime} & v_{4} & u_{4}^{\prime} & v_{4}^{\prime} \\
u_{5} u_{5}^{\prime} & u_{5} v_{5}^{\prime} & u_{5} & v_{5} u_{5}^{\prime} & v_{5} v_{5}^{\prime} & v_{5} & u_{5}^{\prime} & v_{5}^{\prime} \\
u_{6} u_{6}^{\prime} & u_{6} v_{6}^{\prime} & u_{6} & v_{6} u_{6}^{\prime} & v_{6} v_{6}^{\prime} & v_{6} & u_{6}^{\prime} & v_{6}^{\prime} \\
u_{7} u_{7}^{\prime} & u_{7} v_{7}^{\prime} & u_{7} & v_{7} u_{7}^{\prime} & v_{7} v_{7}^{\prime} & v_{7} & u_{7}^{\prime} & v_{7}^{\prime} \\
u_{8} u_{8}^{\prime} & u_{8} v_{8}^{\prime} & u_{8} & v_{8} u_{8}^{\prime} & v_{8} v_{8}^{\prime} & v_{8} & u_{8}^{\prime} & v_{8}^{\prime}
\end{array}\right)\left(\begin{array}{l}
F_{11} \\
F_{12} \\
F_{13} \\
F_{21} \\
F_{22} \\
F_{23} \\
F_{31} \\
F_{32}
\end{array}\right)=-\left(\begin{array}{c}
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Problem with eight-point algorithm

Poor numerical conditioning

Can be fixed by rescaling the data

The normalized eight-point algorithm

(Hartley, 1995)

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels
- Use the eight-point algorithm to compute F from the normalized points
- Enforce the rank-2 constraint (for example, take SVD of F and throw out the smallest singular value)
- Transform fundamental matrix back to original units: if T and T ' are the normalizing transformations in the two images, than the fundamental matrix in original coordinates is $T^{\top} F T^{\prime}$

Comparison of estimation algorithms

	8-point	Normalized 8-point	Nonlinear least squares
Av. Dist. 1	2.33 pixels	0.92 pixel	0.86 pixel
Av. Dist. 2	2.18 pixels	0.85 pixel	0.80 pixel

From epipolar geometry to camera calibration

- Estimating the fundamental matrix is known as "weak calibration"
- If we know the calibration matrices of the two cameras, we can estimate the essential matrix: $E=K^{\top} F K^{\prime}$
- The essential matrix gives us the relative rotation and translation between the cameras, or their extrinsic parameters

Assignment 3 (due March 17)

http://www.cs.unc.edu/~lazebnik/spring09/assignment3.html

