Two-view geometry

Epipolar geometry

- Baseline line connecting the two camera centers
- Epipolar Plane plane containing baseline (1D family)
- Epipoles
- = intersections of baseline with image planes
- = projections of the other camera center
- = vanishing points of camera motion direction
- Epipolar Lines intersections of epipolar plane with image planes (always come in corresponding pairs)

Example: Converging cameras

Example: Motion parallel to image plane

Example: Forward motion

Epipole has same coordinates in both images. Points move along lines radiating from e: "Focus of expansion"

Epipolar constraint

 If we observe a point x in one image, where can the corresponding point x' be in the other image?

Epipolar constraint

- Potential matches for *x* have to lie on the corresponding epipolar line *l*'.
- Potential matches for x' have to lie on the corresponding epipolar line *I*.

Epipolar constraint example

- Assume that the intrinsic and extrinsic parameters of the cameras are known
- We can multiply the projection matrix of each camera (and the image points) by the inverse of the calibration matrix to get *normalized* image coordinates
- We can also set the global coordinate system to the coordinate system of the first camera

The vectors x, t, and Rx' are coplanar

The vectors *x*, *t*, and *Rx*' are coplanar

- E x' is the epipolar line associated with x' (I = E x')
- $E^T x$ is the epipolar line associated with $x (I' = E^T x)$
- Ee'=0 and $E^{T}e=0$
- *E* is singular (rank two)
- E has five degrees of freedom

- The calibration matrices *K* and *K*' of the two cameras are unknown
- We can write the epipolar constraint in terms of *unknown* normalized coordinates:

$$\hat{x}^T E \hat{x}' = 0 \qquad \qquad x = K \hat{x}, \quad x' = K' \hat{x}'$$

- Fx' is the epipolar line associated with x'(I = Fx')
- $F^T x$ is the epipolar line associated with $x(I' = F^T x)$
- Fe'=0 and $F^{T}e=0$
- *F* is singular (rank two)
- F has seven degrees of freedom

The eight-point algorithm

The eight-point algorithm

• Meaning of error
$$\sum_{i=1}^{N} (x_i^T F x_i')^2$$
:

sum of Euclidean distances between points x_i and epipolar lines Fx'_i (or points x'_i and epipolar lines F^Tx_i) multiplied by a scale factor

• Nonlinear approach: minimize

$$\sum_{i=1}^{N} \left[d^{2}(x_{i}, F x_{i}') + d^{2}(x_{i}', F^{T} x_{i}) \right]$$

Problem with eight-point algorithm

$(u_1u_1'$	u_1v_1'	u_1	v_1u_1'	v_1v_1'	v_1	u'_1	v_1'	(F_{11})	(1)
$u_2u'_2$	u_2v_2'	u_2	$v_2 u_2'$	v_2v_2'	v_2	u'_2	v'_2	F_{12}	$\begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$
$u_3u'_3$	u_3v_3'	u_3	$v_3u'_3$	v_3v_3'	v_3	u'_3	v'_3	F_{13}	1
$u_4u'_4$	$u_4v'_4$	u_4	$v_4 u'_4$	$v_4v'_4$	v_4	u'_4	v'_4	F_{21}	 1
$u_5u'_5$	$u_5v'_5$	u_5	$v_5u'_5$	v_5v_5'	v_5	u'_5	v'_5	F_{22}	
u_6u_6'	u_6v_6'	u_6	$v_6 u'_6$	v_6v_6'	v_6	u'_6	v'_6	F_{23}	$\begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}$
u_7u_7'	u_7v_7'	u_7	$v_7 u_7'$	v_7v_7'	v_7	u'_7	v'_7	$ F_{31} $	1
$u_8u'_8$	u_8v_8'	u_8	$v_8u'_8$	v_8v_8'	v_8	u'_8	v'_8)	(F_{32})	(1)

Problem with eight-point algorithm

Poor numerical conditioning Can be fixed by rescaling the data

The normalized eight-point algorithm

(Hartley, 1995)

- Center the image data at the origin, and scale it so the mean squared distance between the origin and the data points is 2 pixels
- Use the eight-point algorithm to compute *F* from the normalized points
- Enforce the rank-2 constraint (for example, take SVD of *F* and throw out the smallest singular value)
- Transform fundamental matrix back to original units: if T and T' are the normalizing transformations in the two images, than the fundamental matrix in original coordinates is $T^T F T'$

Comparison of estimation algorithms

	8-point	Normalized 8-point	Nonlinear least squares
Av. Dist. 1	2.33 pixels	0.92 pixel	0.86 pixel
Av. Dist. 2	2.18 pixels	0.85 pixel	0.80 pixel

From epipolar geometry to camera calibration

- Estimating the fundamental matrix is known as "weak calibration"
- If we know the calibration matrices of the two cameras, we can estimate the essential matrix: $E = K^T F K'$
- The essential matrix gives us the relative rotation and translation between the cameras, or their extrinsic parameters

Assignment 3 (due March 17)

http://www.cs.unc.edu/~lazebnik/spring09/assignment3.html