
Single-view geometry

Odilon Redon, Cyclops, 1914



Geometric vision
• Goal: Recovery of 3D structure

• What cues in the image allow us to do this?



Shading

Visual cues

Merle Norman Cosmetics, Los Angeles

Slide credit: S. Seitz



Visual cues

From The Art of Photography, Canon

Focus

Slide credit: S. Seitz



Visual cues

Perspective

Slide credit: S. Seitz



Visual cues

Motion

Slide credit: S. Seitz



Our goal: Recovery of 3D structure
• We will focus on perspective and motion
• We need multi-view geometry because 

recovery of structure from one image is 
inherently ambiguous
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Recall: Pinhole camera model

PXx =



⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

1
01
01
01

1
Z
Y
X

f
f

Z
Yf
Xf

PXx = [ ]0|I)1,,(diagP ff=

Pinhole camera model



Camera coordinate system

• Principal axis: line from the camera center 
perpendicular to the image plane

• Normalized (camera) coordinate system: camera 
center is at the origin and the principal axis is the z-axis

• Principal point (p): point where principal axis intersects 
the image plane (origin of normalized coordinate system)



Principal point offset

• Camera coordinate system: origin is at the 
prinicipal point

• Image coordinate system: origin is in the corner

principal point: ),( yx pp
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Principal point offset

principal point: ),( yx pp



⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+
+

1
01
01
01

1
Z
Y
X

pf
pf

Z
ZpYf
ZpXf

y

x

y

x

Principal point offset

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1
y

x

pf
pf

K calibration matrix [ ]0|IKP =

principal point: ),( yx pp



⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

111
yy

xx

y

x

y

x

pf
pf

m
m

K βα
βα

Pixel coordinates

mx pixels per meter in horizontal direction, 
my pixels per meter in vertical direction

Pixel size: 
yx mm

11
×
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( )C~-X~RX~ cam =

Camera rotation and translation

• In general, the camera 
coordinate frame will 
be related to the world 
coordinate frame by a 
rotation and a 
translation

coords. of point 
in camera frame

coords. of camera center 
in world frame

coords. of a point
in world frame (nonhomogeneous)



( )C~-X~RX~ cam =
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Camera rotation and translation

In non-homogeneous
coordinates:

Note: C is the null space of the camera projection matrix (PC=0)



Camera parameters
• Intrinsic parameters

• Principal point coordinates
• Focal length
• Pixel magnification factors
• Skew (non-rectangular pixels)
• Radial distortion
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Camera parameters
• Intrinsic parameters

• Principal point coordinates
• Focal length
• Pixel magnification factors
• Skew (non-rectangular pixels)
• Radial distortion

• Extrinsic parameters
• Rotation and translation relative to world coordinate system



Camera calibration
• Given n points with known 3D coordinates Xi

and known image projections xi, estimate the 
camera parameters

? P

Xi

xi
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Camera calibration
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Camera calibration

• P has 11 degrees of freedom (12 parameters, but 
scale is arbitrary)

• One 2D/3D correspondence gives us two linearly 
independent equations

• Homogeneous least squares
• 6 correspondences needed for a minimal solution

0pA =0
P
P
P

X0X
XX0

X0X
XX0

3

2

1111

111

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

T
nn

TT
n

T
nn

T
n

T

TTT

TTT

x
y

x
y

LLL



Camera calibration

• Note: for coplanar points that satisfy ΠTX=0,
we will get degenerate solutions (Π,0,0), 
(0,Π,0), or (0,0,Π)
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Camera calibration
• Once we’ve recovered the numerical form of 

the camera matrix, we still have to figure out 
the intrinsic and extrinsic parameters

• This is a matrix decomposition problem, not 
an estimation problem (see F&P sec. 3.2, 3.3) 



Two-view geometry
• Scene geometry (structure): Given 

projections of the same 3D point in two or 
more images, how do we compute the 3D 
coordinates of that point?

• Correspondence (stereo matching): 
Given a point in just one image, how does it 
constrain the position of the corresponding 
point in a second image?

• Camera geometry (motion): Given a set of 
corresponding points in two images, what 
are the cameras for the two views?



Triangulation
• Given projections of a 3D point in two or more 

images (with known camera matrices), find 
the coordinates of the point

O1 O2

x1
x2

X?



Triangulation
• We want to intersect the two visual rays 

corresponding to x1 and x2, but because of 
noise and numerical errors, they don’t meet 
exactly

O1 O2

x1
x2

X?
R1R2



Triangulation: Geometric approach
• Find shortest segment connecting the two 

viewing rays and let X be the midpoint of that 
segment

O1 O2

x1
x2

X



Triangulation: Linear approach
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Cross product as matrix multiplication:



Triangulation: Linear approach
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three unknown entries of X



Triangulation: Nonlinear approach
Find X that minimizes
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