Single-view geometry

Odilon Redon, Cyclops, 1914

Geometric vision

- Goal: Recovery of 3D structure
- What cues in the image allow us to do this?

Visual cues

Shading

Merle Norman Cosmetics, Los Angeles

Visual cues

Focus

From The Art of Photography, Canon

Visual cues

Perspective

Visual cues

Motion

Our goal: Recovery of 3D structure

- We will focus on perspective and motion
- We need multi-view geometry because recovery of structure from one image is inherently ambiguous

Our goal: Recovery of 3D structure

- We will focus on perspective and motion
- We need multi-view geometry because recovery of structure from one image is inherently ambiguous

Our goal: Recovery of 3D structure

- We will focus on perspective and motion
- We need multi-view geometry because recovery of structure from one image is inherently ambiguous

Recall: Pinhole camera model

$$
\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \mapsto\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{llll}
f & & & \\
& f & & 0 \\
& & & 0 \\
& & & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

$$
\mathrm{x}=\mathrm{PX}
$$

Pinhole camera model

$$
\begin{gathered}
\left(\begin{array}{c}
f X \\
f Y \\
Z
\end{array}\right)=\left[\begin{array}{lll}
f & & \\
& f & \\
& & 1
\end{array}\right]\left[\begin{array}{llll}
1 & & & 0 \\
& 1 & & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \\
\mathrm{x}=\mathrm{PX} \quad \\
\mathrm{P}=\operatorname{diag}(f, f, 1)[\mathrm{I} \mid 0]
\end{gathered}
$$

Camera coordinate system

- Principal axis: line from the camera center perpendicular to the image plane
- Normalized (camera) coordinate system: camera center is at the origin and the principal axis is the z-axis
- Principal point (p): point where principal axis intersects the image plane (origin of normalized coordinate system)

Principal point offset

principal point: $\left(p_{x}, p_{y}\right)$

- Camera coordinate system: origin is at the prinicipal point
- Image coordinate system: origin is in the corner

Principal point offset

principal point: $\left(p_{x}, p_{y}\right)$

$$
(X, Y, Z) \mapsto\left(f X / Z+p_{x}, f Y / Z+p_{y}\right)
$$

$$
\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right) \mapsto\left(\begin{array}{c}
f X+Z p_{x} \\
f Y+Z p_{y} \\
Z
\end{array}\right)=\left[\begin{array}{llll}
f & & p_{x} & 0 \\
& f & p_{y} & 0 \\
& & 1 & 0
\end{array}\right]\left(\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right)
$$

Principal point offset

Pixel coordinates

Pixel size: $\frac{1}{m_{x}} \times \frac{1}{m_{y}}$
m_{x} pixels per meter in horizontal direction, m_{y} pixels per meter in vertical direction

$$
\left.K=\left\{\begin{array}{lll}
{\left[\begin{array}{lll}
m_{x} & & \\
& m_{y} & \\
& & 1
\end{array}\right]\left[\begin{array}{llc}
f & & p_{x} \\
& f & p_{y} \\
& & 1
\end{array}\right]} \\
& \text { pixels } / \mathrm{m} & \mathrm{~m}
\end{array}\right] \begin{array}{lll}
\alpha_{x} & & \beta_{x} \\
& \alpha_{y} & \beta_{y} \\
& & 1
\end{array}\right]
$$

Camera rotation and translation

- In general, the camera coordinate frame will be related to the world coordinate frame by a rotation and a translation

coords. of a point
in world frame (nonhomogeneous)

Camera rotation and translation

In non-homogeneous coordinates:

$$
\widetilde{\mathrm{X}}_{\mathrm{cam}}=\mathrm{R}(\widetilde{\mathrm{X}}-\widetilde{\mathrm{C}})
$$

$$
X_{c a m}=\left[\begin{array}{cc}
R & -R \widetilde{C} \\
0 & 1
\end{array}\right]\binom{\widetilde{\mathrm{X}}}{1}=\left[\begin{array}{cc}
\mathrm{R} & -\mathrm{R} \widetilde{\mathrm{C}} \\
0 & 1
\end{array}\right] \mathrm{X}
$$

$$
\mathrm{x}=\mathrm{K}[\mathrm{I} \mid 0] \mathrm{X}_{\mathrm{cam}}=\mathrm{K}[\mathrm{R} \mid-\mathrm{R} \widetilde{\mathrm{C}}] \mathrm{X}
$$

$$
\mathrm{P}=\mathrm{K}[\mathrm{R} \mid \mathrm{t}],
$$

$$
t=-R \widetilde{C}
$$

Note: C is the null space of the camera projection matrix $(\mathrm{PC}=0)$

Camera parameters

- Intrinsic parameters
- Principal point coordinates
- Focal length
- Pixel magnification factors

$$
K=\left[\begin{array}{lll}
m_{x} & & \\
& m_{y} & \\
& & 1
\end{array}\right]\left[\begin{array}{llc}
f & & p_{x} \\
& f & p_{y} \\
& & 1
\end{array}\right]=\left[\begin{array}{llc}
\alpha_{x} & & \beta_{x} \\
& \alpha_{y} & \beta_{y} \\
& & 1
\end{array}\right]
$$

- Skew (non-rectangular pixels)
- Radial distortion

radial distortion

Camera parameters

- Intrinsic parameters
- Principal point coordinates
- Focal length
- Pixel magnification factors
- Skew (non-rectangular pixels)
- Radial distortion
- Extrinsic parameters
- Rotation and translation relative to world coordinate system

Camera calibration

- Given n points with known 3D coordinates X_{i} and known image projections x_{i}, estimate the camera parameters

P?

Camera calibration

$$
\begin{gathered}
\lambda \mathrm{x}_{i}=\mathrm{PX}_{i} \quad \lambda\left[\begin{array}{c}
x_{i} \\
y_{i} \\
1
\end{array}\right]\left[\begin{array}{c}
\mathrm{P}_{1}^{T} \\
\mathrm{P}_{2}^{T} \\
\mathrm{P}_{3}^{T}
\end{array}\right] \mathrm{X}_{i} \quad \mathrm{x}_{i} \times \mathrm{PX}_{i}=0 \\
{\left[\begin{array}{ccc}
0 & -\mathrm{X}_{i}^{T} & y_{i} \mathrm{X}_{i}^{T} \\
\mathrm{X}_{i}^{T} & 0 & -x_{i} \mathrm{X}_{i}^{T} \\
-y_{i} \mathrm{X}_{i}^{T} & x_{i} \mathrm{X}_{i}^{T} & 0
\end{array}\right]\left(\begin{array}{l}
\mathrm{P}_{1} \\
\mathrm{P}_{2} \\
\mathrm{P}_{3}
\end{array}\right)=0}
\end{gathered}
$$

Two linearly independent equations

Camera calibration

$$
\left[\begin{array}{ccc}
0^{T} & \mathrm{X}_{1}^{T} & -y_{1} \mathrm{X}_{1}^{T} \\
\mathrm{X}_{1}^{T} & 0^{T} & -x_{1} \mathrm{X}_{1}^{T} \\
\cdots & \cdots & \cdots \\
0^{T} & \mathrm{X}_{n}^{T} & -y_{n} \mathrm{X}_{n}^{T} \\
\mathrm{X}_{n}^{T} & 0^{T} & -x_{n} \mathrm{X}_{n}^{T}
\end{array}\right]\left(\begin{array}{l}
\mathrm{P}_{1} \\
\mathrm{P}_{2} \\
\mathrm{P}_{3}
\end{array}\right)=0 \quad \mathrm{Ap}=0
$$

- P has 11 degrees of freedom (12 parameters, but scale is arbitrary)
- One 2D/3D correspondence gives us two linearly independent equations
- Homogeneous least squares
- 6 correspondences needed for a minimal solution

Camera calibration

$$
\left[\begin{array}{ccc}
0^{T} & \mathrm{X}_{1}^{T} & -y_{1} \mathrm{X}_{1}^{T} \\
\mathrm{X}_{1}^{T} & 0^{T} & -x_{1} \mathrm{X}_{1}^{T} \\
\cdots & \cdots & \cdots \\
0^{T} & \mathrm{X}_{n}^{T} & -y_{n} \mathrm{X}_{n}^{T} \\
\mathrm{X}_{n}^{T} & 0^{T} & -x_{n} \mathrm{X}_{n}^{T}
\end{array}\right]\left(\begin{array}{l}
\mathrm{P}_{1} \\
\mathrm{P}_{2} \\
\mathrm{P}_{3}
\end{array}\right)=0 \quad \mathrm{Ap}=0
$$

- Note: for coplanar points that satisfy $\Pi^{T} \mathrm{X}=0$, we will get degenerate solutions ($\Pi, 0,0$), $(0, \Pi, 0)$, or $(0,0, \Pi)$

Camera calibration

- Once we've recovered the numerical form of the camera matrix, we still have to figure out the intrinsic and extrinsic parameters
- This is a matrix decomposition problem, not an estimation problem (see F\&P sec. 3.2, 3.3)

Two-view geometry

- Scene geometry (structure): Given projections of the same 3D point in two or more images, how do we compute the 3D coordinates of that point?
- Correspondence (stereo matching): Given a point in just one image, how does it constrain the position of the corresponding point in a second image?
- Camera geometry (motion): Given a set of corresponding points in two images, what are the cameras for the two views?

Triangulation

- Given projections of a 3D point in two or more images (with known camera matrices), find the coordinates of the point

Triangulation

- We want to intersect the two visual rays corresponding to x_{1} and x_{2}, but because of noise and numerical errors, they don't meet exactly

Triangulation: Geometric approach

- Find shortest segment connecting the two viewing rays and let X be the midpoint of that segment

Triangulation: Linear approach

$$
\begin{array}{llr}
\lambda_{1} \mathrm{x}_{1}=\mathrm{P}_{1} \mathrm{X} & \mathrm{x}_{1} \times \mathrm{P}_{1} \mathrm{X}=0 & {\left[\mathrm{x}_{1 \times}\right] \mathrm{P}_{1} \mathrm{X}=0} \\
\lambda_{2} \mathrm{x}_{2}=\mathrm{P}_{2} \mathrm{X} & \mathrm{x}_{2} \times \mathrm{P}_{2} \mathrm{X}=0 & {\left[\mathrm{x}_{2 \times}\right] \mathrm{P}_{2} \mathrm{X}=0}
\end{array}
$$

Cross product as matrix multiplication:

$$
\mathbf{a} \times \mathbf{b}=\left[\begin{array}{ccc}
0 & -a_{z} & a_{y} \\
a_{z} & 0 & -a_{x} \\
-a_{y} & a_{x} & 0
\end{array}\right]\left[\begin{array}{l}
b_{x} \\
b_{y} \\
b_{z}
\end{array}\right]=\left[\mathbf{a}_{x}\right] \mathbf{b}
$$

Triangulation: Linear approach

$$
\begin{array}{lll}
\lambda_{1} \mathrm{x}_{1}=\mathrm{P}_{1} \mathrm{X} & \mathrm{x}_{1} \times \mathrm{P}_{1} \mathrm{X}=0 & {\left[\mathrm{x}_{1 \times}\right] \mathrm{P}_{1} \mathrm{X}=0} \\
\lambda_{2} \mathrm{x}_{2}=\mathrm{P}_{2} \mathrm{X} & \mathrm{x}_{2} \times \mathrm{P}_{2} \mathrm{X}=0 & {\left[\mathrm{x}_{2 \times}\right] \mathrm{P}_{2} \mathrm{X}=0}
\end{array}
$$

Two independent equations each in terms of three unknown entries of X

Triangulation: Nonlinear approach

Find X that minimizes

$$
d^{2}\left(x_{1}, P_{1} X\right)+d^{2}\left(x_{2}, P_{2} X\right)
$$

