
Image alignment



Image alignment: Motivation

Panorama stitching

Recognition
of object
instances



Image alignment: Challenges

Small degree of overlap

Occlusion,
clutter



Image alignment

• Two broad approaches:
• Direct (pixel-based) alignment

– Search for alignment where most pixels agree
• Feature-based alignment

– Search for alignment where extracted features agree
– Can be verified using pixel-based alignment



Alignment as fitting
• Previous lectures: fitting a model to features in one image

∑
i

i Mx ),(residual
Find model M that minimizes

M

xi



Alignment as fitting
• Previous lectures: fitting a model to features in one image

• Alignment: fitting a model to a transformation between 
pairs of features (matches) in two images
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Feature-based alignment outline
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Feature-based alignment outline

• Extract features
• Compute putative matches
• Loop:

• Hypothesize transformation T (small group of putative 
matches that are related by T)

• Verify transformation (search for other matches consistent 
with T)



2D transformation models

• Similarity
(translation, 
scale, rotation)

• Affine

• Projective
(homography)



Let’s start with affine transformations
• Simple fitting procedure (linear least squares)
• Approximates viewpoint changes for roughly planar 

objects and roughly orthographic cameras
• Can be used to initialize fitting for more complex 

models



Fitting an affine transformation
• Assume we know the correspondences, how do we 

get the transformation?

),( ii yx ′′
),( ii yx

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
′
′

2

1

43

21

t
t

y
x

mm
mm

y
x

i

i

i

i

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′
′

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

L

L

L

L

i

i

ii

ii

y
x

t
t
m
m
m
m

yx
yx

2

1

4

3

2

1

1000
0100



Fitting an affine transformation

• Linear system with six unknowns
• Each match gives us two linearly independent 

equations: need at least three to solve for the 
transformation parameters
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What if we don’t know the correspondences?

?



What if we don’t know the correspondences?

• Need to compare feature descriptors of local patches 
surrounding interest points
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Feature descriptors
• Assuming the patches are already normalized (i.e., 

the local effect of the geometric transformation is 
factored out), how do we compute their similarity?

• Want invariance to intensity changes, noise, 
perceptually insignificant changes of the pixel pattern



• Simplest descriptor: vector of raw intensity values
• How to compare two such vectors?

• Sum of squared differences (SSD)

– Not invariant to intensity change

• Normalized correlation

– Invariant to affine intensity change

Feature descriptors
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Feature descriptors
• Disadvantage of patches as descriptors: 

• Small shifts can affect matching score a lot

• Solution: histograms

0 2 π



• Descriptor computation:
• Divide patch into 4x4 sub-patches
• Compute histogram of gradient orientations (8 reference 

angles) inside each sub-patch
• Resulting descriptor: 4x4x8 = 128 dimensions

Feature descriptors: SIFT

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 
(2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


• Descriptor computation:
• Divide patch into 4x4 sub-patches
• Compute histogram of gradient orientations (8 reference 

angles) inside each sub-patch
• Resulting descriptor: 4x4x8 = 128 dimensions

• Advantage over raw vectors of pixel values
• Gradients less sensitive to illumination change
• “Subdivide and disorder” strategy achieves robustness to 

small shifts, but still preserves some spatial information

Feature descriptors: SIFT

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 
(2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Feature matching

?

• Generating putative matches: for each patch in one 
image, find a short list of patches in the other image 
that could match it based solely on appearance



Feature matching
• Generating putative matches: for each patch in one 

image, find a short list of patches in the other image 
that could match it based solely on appearance
• Exhaustive search

– For each feature in one image, compute the distance to all
features in the other image and find the “closest” ones 
(threshold or fixed number of top matches)

• Fast approximate nearest neighbor search
– Hierarchical spatial data structures (kd-trees, vocabulary trees)
– Hashing



Feature space outlier rejection
• How can we tell which putative matches are more 

reliable?
• Heuristic: compare distance of nearest neighbor to 

that of second nearest neighbor
• Ratio will be high for features that are not distinctive
• Threshold of 0.8 provides good separation

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 
(2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Reading

David G. Lowe. "Distinctive image features from scale-
invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Dealing with outliers
• The set of putative matches contains a very high 

percentage of outliers
• Heuristics for feature-space outlier rejection 
• Geometric fitting strategies:

• RANSAC
• Incremental alignment
• Hough transform
• Hashing



Strategy 1: RANSAC
RANSAC loop:
1. Randomly select a seed group of matches
2. Compute transformation from seed group
3. Find inliers to this transformation 
4. If the number of inliers is sufficiently large, re-compute 

least-squares estimate of transformation on all of the 
inliers

Keep the transformation with the largest number of inliers



RANSAC example: Translation

Putative matches



RANSAC example: Translation

Select one match, count inliers



RANSAC example: Translation

Select one match, count inliers



RANSAC example: Translation

Select translation with the most inliers



Problem with RANSAC
• In many practical situations, the percentage of 

outliers (incorrect putative matches) is often very high 
(90% or above)

• Alternative strategy: restrict search space by using 
strong locality constraints on seed groups and inliers
• Incremental alignment



Strategy 2: Incremental alignment
• Take advantage of strong locality constraints: only 

pick close-by matches to start with, and gradually add 
more matches in the same neighborhood

S. Lazebnik, C. Schmid and J. Ponce, “Semi-local affine parts for object 
recognition,” BMVC 2004.

http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/bmvc04.pdf
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/bmvc04.pdf
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Strategy 2: Incremental alignment
• Take advantage of strong locality constraints: only 

pick close-by matches to start with, and gradually add 
more matches in the same neighborhood



A

Strategy 2: Incremental alignment
• Take advantage of strong locality constraints: only 

pick close-by matches to start with, and gradually add 
more matches in the same neighborhood



Strategy 3: Hough transform
• Recall: Generalized Hough transform

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with 
an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

model

visual codeword with
displacement vectors

test image

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf


Strategy 3: Hough transform
• Suppose our features are adapted to scale and rotation

• Then a single feature match provides an alignment hypothesis 
(translation, scale, orientation)

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004. 

model

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Strategy 3: Hough transform
• Suppose our features are adapted to scale and rotation

• Then a single feature match provides an alignment hypothesis 
(translation, scale, orientation)

• Of course, a hypothesis obtained from a single match is unreliable
• Solution: let each match vote for its hypothesis in a Hough space 

with very coarse bins

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004. 

model

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Hough transform details (D. Lowe’s system)
• Training phase: For each model feature, record 2D 

location, scale, and orientation of model (relative to 
normalized feature frame)

• Test phase: Let each match between a test and a 
model feature vote in a 4D Hough space
• Use broad bin sizes of 30 degrees for orientation, a factor of 

2 for scale, and 0.25 times image size for location
• Vote for two closest bins in each dimension

• Find all bins with at least three votes and perform 
geometric verification 
• Estimate least squares affine transformation 
• Use stricter thresholds on transformation residual
• Search for additional features that agree with the alignment

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Strategy 4: Hashing
• Make each image feature into a low-dimensional “key” that 

indexes into a table of  hypotheses

model

hash table



Strategy 4: Hashing
• Make each image feature into a low-dimensional “key” that 

indexes into a table of  hypotheses
• Given a new test image, compute the hash keys for all features 

found in that image, access the table, and look for consistent 
hypotheses

model

hash table

test image



Strategy 4: Hashing
• Make each image feature into a low-dimensional “key” that 

indexes into a table of  hypotheses
• Given a new test image, compute the hash keys for all features 

found in that image, access the table, and look for consistent 
hypotheses

• This can even work when we don’t have any feature descriptors: 
we can take n-tuples of neighboring features and compute 
invariant hash codes from their geometric configurations

A

B

C
D



Application: Searching the sky
http://www.astrometry.net/

http://www.astrometry.net/


Beyond affine transformations
• Homography: plane projective transformation 

(transformation taking a quad to another arbitrary 
quad)



Homography
• The transformation between two views of a planar 

surface

• The transformation between images from two 
cameras that share the same center



Fitting a homography
• Recall: homogenenous coordinates

Converting to homogenenous
image coordinates

Converting from homogenenous
image coordinates



Fitting a homography
• Recall: homogenenous coordinates

• Equation for homography:

Converting to homogenenous
image coordinates

Converting from homogenenous
image coordinates
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Fitting a homography
• Equation for homography:
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Direct linear transform

• H has 8 degrees of freedom (9 parameters, but scale 
is arbitrary)

• One match gives us two linearly independent 
equations

• Four matches needed for a minimal solution (null 
space of 8x9 matrix)

• More than four: homogeneous least squares
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Application: Panorama stitching



Recognizing panoramas

M. Brown and D. Lowe,  “Recognizing Panoramas,” ICCV 2003. 

• Given contents of a camera memory card, 
automatically figure out which pictures go together 
and stitch them together into panoramas

http://www.cs.ubc.ca/~mbrown/panorama/panorama.html

http://www.cs.ubc.ca/~mbrown/papers/iccv2003.pdf
http://www.cs.ubc.ca/~mbrown/panorama/panorama.html


Issues in alignment-based applications

• Choosing the geometric alignment model
• Tradeoff between “correctness” and robustness (also, 

efficiency)

• Choosing the descriptor
• “Rich” imagery (natural images): high-dimensional patch-based 

descriptors (e.g., SIFT)
• “Impoverished” imagery (e.g., star fields): need to create 

invariant geometric descriptors from k-tuples of point-based 
features

• Strategy for finding putative matches
• Small number of images, one-time computation (e.g., panorama 

stitching): brute force search
• Large database of model images, frequent queries: indexing or 

hashing
• Heuristics for feature-space pruning of putative matches



Issues in alignment-based applications

• Choosing the geometric alignment model
• Choosing the descriptor
• Strategy for finding putative matches
• Hypothesis generation strategy

• Relatively large inlier ratio: RANSAC
• Small inlier ratio: locality constraints, Hough transform

• Hypothesis verification strategy
• Size of consensus set, residual tolerance depend on inlier ratio 

and expected accuracy of the model
• Possible refinement of geometric model
• Dense verification



Next time: Single-view geometry
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