
Image alignment

Image alignment: Motivation

Panorama stitching

Recognition
of object
instances

Image alignment: Challenges

Small degree of overlap

Occlusion,
clutter

Image alignment

• Two broad approaches:
• Direct (pixel-based) alignment

– Search for alignment where most pixels agree
• Feature-based alignment

– Search for alignment where extracted features agree
– Can be verified using pixel-based alignment

Alignment as fitting
• Previous lectures: fitting a model to features in one image

∑
i

i Mx),(residual
Find model M that minimizes

M

xi

Alignment as fitting
• Previous lectures: fitting a model to features in one image

• Alignment: fitting a model to a transformation between
pairs of features (matches) in two images

∑
i

i Mx),(residual

∑ ′
i

ii xxT)),((residual

Find model M that minimizes

Find transformation T
that minimizes

M

xi

T

xi
xi

'

Feature-based alignment outline

Feature-based alignment outline

• Extract features

Feature-based alignment outline

• Extract features
• Compute putative matches

Feature-based alignment outline

• Extract features
• Compute putative matches
• Loop:

• Hypothesize transformation T (small group of putative
matches that are related by T)

Feature-based alignment outline

• Extract features
• Compute putative matches
• Loop:

• Hypothesize transformation T (small group of putative
matches that are related by T)

• Verify transformation (search for other matches consistent
with T)

Feature-based alignment outline

• Extract features
• Compute putative matches
• Loop:

• Hypothesize transformation T (small group of putative
matches that are related by T)

• Verify transformation (search for other matches consistent
with T)

2D transformation models

• Similarity
(translation,
scale, rotation)

• Affine

• Projective
(homography)

Let’s start with affine transformations
• Simple fitting procedure (linear least squares)
• Approximates viewpoint changes for roughly planar

objects and roughly orthographic cameras
• Can be used to initialize fitting for more complex

models

Fitting an affine transformation
• Assume we know the correspondences, how do we

get the transformation?

),(ii yx ′′
),(ii yx

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
′
′

2

1

43

21

t
t

y
x

mm
mm

y
x

i

i

i

i

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′
′

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

L

L

L

L

i

i

ii

ii

y
x

t
t
m
m
m
m

yx
yx

2

1

4

3

2

1

1000
0100

Fitting an affine transformation

• Linear system with six unknowns
• Each match gives us two linearly independent

equations: need at least three to solve for the
transformation parameters

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

′
′

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

L

L

L

L

i

i

ii

ii

y
x

t
t
m
m
m
m

yx
yx

2

1

4

3

2

1

1000
0100

What if we don’t know the correspondences?

?

What if we don’t know the correspondences?

• Need to compare feature descriptors of local patches
surrounding interest points

() ()=
?

feature
descriptor

feature
descriptor

?

Feature descriptors
• Assuming the patches are already normalized (i.e.,

the local effect of the geometric transformation is
factored out), how do we compute their similarity?

• Want invariance to intensity changes, noise,
perceptually insignificant changes of the pixel pattern

• Simplest descriptor: vector of raw intensity values
• How to compare two such vectors?

• Sum of squared differences (SSD)

– Not invariant to intensity change

• Normalized correlation

– Invariant to affine intensity change

Feature descriptors

()∑ −=
i

ii vuvu 2),SSD(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−−
=

∑∑

∑

j
j

j
j

i ii

vvuu

vvuu
vu

22)()(

))((
),(ρ

Feature descriptors
• Disadvantage of patches as descriptors:

• Small shifts can affect matching score a lot

• Solution: histograms

0 2 π

• Descriptor computation:
• Divide patch into 4x4 sub-patches
• Compute histogram of gradient orientations (8 reference

angles) inside each sub-patch
• Resulting descriptor: 4x4x8 = 128 dimensions

Feature descriptors: SIFT

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60
(2), pp. 91-110, 2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

• Descriptor computation:
• Divide patch into 4x4 sub-patches
• Compute histogram of gradient orientations (8 reference

angles) inside each sub-patch
• Resulting descriptor: 4x4x8 = 128 dimensions

• Advantage over raw vectors of pixel values
• Gradients less sensitive to illumination change
• “Subdivide and disorder” strategy achieves robustness to

small shifts, but still preserves some spatial information

Feature descriptors: SIFT

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60
(2), pp. 91-110, 2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Feature matching

?

• Generating putative matches: for each patch in one
image, find a short list of patches in the other image
that could match it based solely on appearance

Feature matching
• Generating putative matches: for each patch in one

image, find a short list of patches in the other image
that could match it based solely on appearance
• Exhaustive search

– For each feature in one image, compute the distance to all
features in the other image and find the “closest” ones
(threshold or fixed number of top matches)

• Fast approximate nearest neighbor search
– Hierarchical spatial data structures (kd-trees, vocabulary trees)
– Hashing

Feature space outlier rejection
• How can we tell which putative matches are more

reliable?
• Heuristic: compare distance of nearest neighbor to

that of second nearest neighbor
• Ratio will be high for features that are not distinctive
• Threshold of 0.8 provides good separation

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60
(2), pp. 91-110, 2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Reading

David G. Lowe. "Distinctive image features from scale-
invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Dealing with outliers
• The set of putative matches contains a very high

percentage of outliers
• Heuristics for feature-space outlier rejection
• Geometric fitting strategies:

• RANSAC
• Incremental alignment
• Hough transform
• Hashing

Strategy 1: RANSAC
RANSAC loop:
1. Randomly select a seed group of matches
2. Compute transformation from seed group
3. Find inliers to this transformation
4. If the number of inliers is sufficiently large, re-compute

least-squares estimate of transformation on all of the
inliers

Keep the transformation with the largest number of inliers

RANSAC example: Translation

Putative matches

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select one match, count inliers

RANSAC example: Translation

Select translation with the most inliers

Problem with RANSAC
• In many practical situations, the percentage of

outliers (incorrect putative matches) is often very high
(90% or above)

• Alternative strategy: restrict search space by using
strong locality constraints on seed groups and inliers
• Incremental alignment

Strategy 2: Incremental alignment
• Take advantage of strong locality constraints: only

pick close-by matches to start with, and gradually add
more matches in the same neighborhood

S. Lazebnik, C. Schmid and J. Ponce, “Semi-local affine parts for object
recognition,” BMVC 2004.

http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/bmvc04.pdf
http://www-cvr.ai.uiuc.edu/ponce_grp/publication/paper/bmvc04.pdf

Strategy 2: Incremental alignment
• Take advantage of strong locality constraints: only

pick close-by matches to start with, and gradually add
more matches in the same neighborhood

Strategy 2: Incremental alignment
• Take advantage of strong locality constraints: only

pick close-by matches to start with, and gradually add
more matches in the same neighborhood

Strategy 2: Incremental alignment
• Take advantage of strong locality constraints: only

pick close-by matches to start with, and gradually add
more matches in the same neighborhood

A

Strategy 2: Incremental alignment
• Take advantage of strong locality constraints: only

pick close-by matches to start with, and gradually add
more matches in the same neighborhood

Strategy 3: Hough transform
• Recall: Generalized Hough transform

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with
an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004

model

visual codeword with
displacement vectors

test image

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

Strategy 3: Hough transform
• Suppose our features are adapted to scale and rotation

• Then a single feature match provides an alignment hypothesis
(translation, scale, orientation)

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004.

model

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Strategy 3: Hough transform
• Suppose our features are adapted to scale and rotation

• Then a single feature match provides an alignment hypothesis
(translation, scale, orientation)

• Of course, a hypothesis obtained from a single match is unreliable
• Solution: let each match vote for its hypothesis in a Hough space

with very coarse bins

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004.

model

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Hough transform details (D. Lowe’s system)
• Training phase: For each model feature, record 2D

location, scale, and orientation of model (relative to
normalized feature frame)

• Test phase: Let each match between a test and a
model feature vote in a 4D Hough space
• Use broad bin sizes of 30 degrees for orientation, a factor of

2 for scale, and 0.25 times image size for location
• Vote for two closest bins in each dimension

• Find all bins with at least three votes and perform
geometric verification
• Estimate least squares affine transformation
• Use stricter thresholds on transformation residual
• Search for additional features that agree with the alignment

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
IJCV 60 (2), pp. 91-110, 2004.

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf

Strategy 4: Hashing
• Make each image feature into a low-dimensional “key” that

indexes into a table of hypotheses

model

hash table

Strategy 4: Hashing
• Make each image feature into a low-dimensional “key” that

indexes into a table of hypotheses
• Given a new test image, compute the hash keys for all features

found in that image, access the table, and look for consistent
hypotheses

model

hash table

test image

Strategy 4: Hashing
• Make each image feature into a low-dimensional “key” that

indexes into a table of hypotheses
• Given a new test image, compute the hash keys for all features

found in that image, access the table, and look for consistent
hypotheses

• This can even work when we don’t have any feature descriptors:
we can take n-tuples of neighboring features and compute
invariant hash codes from their geometric configurations

A

B

C
D

Application: Searching the sky
http://www.astrometry.net/

http://www.astrometry.net/

Beyond affine transformations
• Homography: plane projective transformation

(transformation taking a quad to another arbitrary
quad)

Homography
• The transformation between two views of a planar

surface

• The transformation between images from two
cameras that share the same center

Fitting a homography
• Recall: homogenenous coordinates

Converting to homogenenous
image coordinates

Converting from homogenenous
image coordinates

Fitting a homography
• Recall: homogenenous coordinates

• Equation for homography:

Converting to homogenenous
image coordinates

Converting from homogenenous
image coordinates

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
′
′

11 333231

232221

131211

y
x

hhh
hhh
hhh

y
x

λ

Fitting a homography
• Equation for homography:

i
T

T

T

ii x
h
h
h

xHx
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

==′

3

2

1

λ
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
′
′

11 333231

232221

131211

i

i

i

i

y
x

hhh
hhh
hhh

y
x

λ

0=×′ ii xHx
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′−′
′−
−′

=×′

i
T

ii
T

i

i
T

ii
T

i
T

i
T

i

ii

yx
x

y

xhxh
xhxh
xhxh

xHx

12

31

23

0
0

0
0

3

2

1

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

′′−

′−

′−

h
h
h

xx
xx

xx

TT
ii

T
ii

T
ii

TT
i

T
ii

T
i

T

xy
x

y

3 equations, only 2 linearly
independent

9 entries, 8 degrees of freedom
(scale is arbitrary)

Direct linear transform

• H has 8 degrees of freedom (9 parameters, but scale
is arbitrary)

• One match gives us two linearly independent
equations

• Four matches needed for a minimal solution (null
space of 8x9 matrix)

• More than four: homogeneous least squares

0

0
0

0
0

3

2

1111

111

=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

′−

′−

′−

′−

h
h
h

xx
xx

xx
xx

T
nn

TT
n

T
nn

T
n

T

TTT

TTT

x
y

x
y

LLL 0=hA

Application: Panorama stitching

Recognizing panoramas

M. Brown and D. Lowe, “Recognizing Panoramas,” ICCV 2003.

• Given contents of a camera memory card,
automatically figure out which pictures go together
and stitch them together into panoramas

http://www.cs.ubc.ca/~mbrown/panorama/panorama.html

http://www.cs.ubc.ca/~mbrown/papers/iccv2003.pdf
http://www.cs.ubc.ca/~mbrown/panorama/panorama.html

Issues in alignment-based applications

• Choosing the geometric alignment model
• Tradeoff between “correctness” and robustness (also,

efficiency)

• Choosing the descriptor
• “Rich” imagery (natural images): high-dimensional patch-based

descriptors (e.g., SIFT)
• “Impoverished” imagery (e.g., star fields): need to create

invariant geometric descriptors from k-tuples of point-based
features

• Strategy for finding putative matches
• Small number of images, one-time computation (e.g., panorama

stitching): brute force search
• Large database of model images, frequent queries: indexing or

hashing
• Heuristics for feature-space pruning of putative matches

Issues in alignment-based applications

• Choosing the geometric alignment model
• Choosing the descriptor
• Strategy for finding putative matches
• Hypothesis generation strategy

• Relatively large inlier ratio: RANSAC
• Small inlier ratio: locality constraints, Hough transform

• Hypothesis verification strategy
• Size of consensus set, residual tolerance depend on inlier ratio

and expected accuracy of the model
• Possible refinement of geometric model
• Dense verification

Next time: Single-view geometry

	Image alignment
	Image alignment: Motivation
	Image alignment: Challenges
	Image alignment
	Alignment as fitting
	Alignment as fitting
	Feature-based alignment outline
	Feature-based alignment outline
	Feature-based alignment outline
	Feature-based alignment outline
	Feature-based alignment outline
	Feature-based alignment outline
	2D transformation models
	Let’s start with affine transformations
	Fitting an affine transformation
	Fitting an affine transformation
	What if we don’t know the correspondences?
	What if we don’t know the correspondences?
	Feature descriptors
	Feature descriptors
	Feature descriptors
	Feature descriptors: SIFT
	Feature descriptors: SIFT
	Feature matching
	Feature matching
	Feature space outlier rejection
	Reading
	Dealing with outliers
	Strategy 1: RANSAC
	RANSAC example: Translation
	RANSAC example: Translation
	RANSAC example: Translation
	RANSAC example: Translation
	Problem with RANSAC
	Strategy 2: Incremental alignment
	Strategy 2: Incremental alignment
	Strategy 2: Incremental alignment
	Strategy 2: Incremental alignment
	Strategy 2: Incremental alignment
	Strategy 3: Hough transform
	Strategy 3: Hough transform
	Strategy 3: Hough transform
	Hough transform details (D. Lowe’s system)
	Strategy 4: Hashing
	Strategy 4: Hashing
	Strategy 4: Hashing
	Application: Searching the sky
	Beyond affine transformations
	Homography
	Fitting a homography
	Fitting a homography
	Fitting a homography
	Direct linear transform
	Application: Panorama stitching
	Recognizing panoramas
	Issues in alignment-based applications
	Issues in alignment-based applications
	Next time: Single-view geometry

