Fitting

Fitting: Motivation

- We've learned how to detect edges, corners, blobs. Now what?
- We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according to a simple model

Fitting

- Choose a parametric model to represent a set of features

simple model: lines

simple model: circles

complicated model: car

Fitting

- Choose a parametric model to represent a set of features
- Membership criterion is not local
- Can't tell whether a point belongs to a given model just by looking at that point
- Three main questions:
- What model represents this set of features best?
- Which of several model instances gets which feature?
- How many model instances are there?
- Computational complexity is important
- It is infeasible to examine every possible set of parameters and every possible combination of features

Fitting: Issues

Case study: Line detection

- Noise in the measured feature locations
- Extraneous data: clutter (outliers), multiple lines
- Missing data: occlusions

Fitting: Issues

- If we know which points belong to the line, how do we find the "optimal" line parameters?
- Least squares
- What if there are outliers?
- Robust fitting, RANSAC
- What if there are many lines?
- Voting methods: RANSAC, Hough transform
- What if we're not even sure it's a line?
- Model selection

Least squares line fitting

Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
Line equation: $y_{i}=m x_{i}+b$
Find (m, b) to minimize

$$
E=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2}
$$

Least squares line fitting

Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
Line equation: $y_{i}=m x_{i}+b$
Find (m, b) to minimize

$$
E=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2}
$$

$$
\begin{aligned}
& E=\sum_{i=1}^{n}\left(y_{i}-\left[\begin{array}{ll}
x_{i} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]\right)^{2}=\left\|\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]-\left[\begin{array}{cc}
x_{1} & 1 \\
\vdots & \vdots \\
x_{n} & 1
\end{array}\right]\left[\begin{array}{c}
m \\
b
\end{array}\right]\right\|^{2}=\|Y-X B\|^{2} \\
&=(Y-X B)^{T}(Y-X B)=Y^{T} Y-2(X B)^{T} Y+(X B)^{T}(X B) \\
& \frac{d E}{d B}=2 X^{T} X B-2 X^{T} Y=0
\end{aligned}
$$

$$
X^{T} X B=X^{T} Y
$$

Normal equations: least squares solution to $X B=Y$

Problem with "vertical" least squares

- Not rotation-invariant
- Fails completely for vertical lines

Total least squares

Distance between point $\left(x_{n}, y_{n}\right)$ and line $a x+b y=d\left(a^{2}+b^{2}=1\right)$: $|a x+b y-d|$ Find (a, b, d) to minimize the sum of squared perpendicular distances

$$
E=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}-d\right)^{2}
$$

Total least squares

Distance between point $\left(x_{n}, y_{n}\right)$ and line $a x+b y=d\left(a^{2}+b^{2}=1\right)$: $|a x+b y-d|$ Find (a, b, d) to minimize the sum of squared perpendicular distances

$$
E=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}-d\right)^{2}
$$

$\frac{\partial E}{\partial d}=\sum_{i=1}^{n}-2\left(a x_{i}+b y_{i}-d\right)=0$

$$
d=\frac{a}{n} \sum_{i=1}^{n} x_{i}+\frac{b}{n} \sum_{i=1}^{n} x_{i}=a \bar{x}+b \bar{y}
$$

$E=\sum_{i=1}^{n}\left(a\left(x_{i}-\bar{x}\right)+b\left(y_{i}-\bar{y}\right)\right)^{2}=$
$\frac{d E}{d N}=2\left(U^{T} U\right) N=0$
Solution to $\left(U^{T} U\right) N=0$, subject to $\|N\|^{2}=1$: eigenvector of $U^{T} U$ associated with the smallest eigenvalue (least squares solution to homogeneous linear system $U N=0$)

Total least squares

$$
U=\left[\begin{array}{cc}
x_{1}-\bar{x} & y_{1}-\bar{y} \\
\vdots & \vdots \\
x_{n}-\bar{x} & y_{n}-\bar{y}
\end{array}\right] \quad U^{T} U=\left[\begin{array}{cc}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} & \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
\end{array}\right]
$$

second moment matrix

Total least squares

$$
U=\left[\begin{array}{cc}
x_{1}-\bar{x} & y_{1}-\bar{y} \\
\vdots & \vdots \\
x_{n}-\bar{x} & y_{n}-\bar{y}
\end{array}\right] \quad U^{\tau} U=\left[\begin{array}{cc}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} & \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
\end{array}\right]
$$

Least squares as likelihood maximization

- Generative model: line points are corrupted by Gaussian noise in the direction perpendicular to the line

$$
\binom{x}{y}=\binom{u}{v}+\varepsilon\binom{a}{b}
$$

Least squares as likelihood maximization

- Generative model: line points are corrupted by Gaussian noise in the direction perpendicular to the line

$$
\binom{x}{y}=\binom{u}{v}+\varepsilon\binom{a}{b}
$$

Likelihood of points given line parameters (a, b, d):
$P\left(x_{1}, \ldots, x_{n} \mid a, b, d\right)=\prod_{i=1}^{n} P\left(x_{i} \mid a, b, d\right) \propto \prod_{i=1}^{n} \exp \left(-\frac{\left(a x_{i}+b y_{i}-d\right)^{2}}{2 \sigma^{2}}\right)$
Log-likelihood: $L\left(x_{1}, \ldots, x_{n} \mid a, b, d\right)=-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(a x_{i}+b y_{i}-d\right)^{2}$

Least squares for general curves

- We would like to minimize the sum of squared geometric distances between the data points and the curve

Least squares for conics

- Equation of a general conic:

$$
\begin{aligned}
& C(\mathbf{a}, \mathbf{x})=\mathbf{a} \cdot \mathbf{x}=a x^{2}+b x y+c y^{2}+d x+e y+f=0, \\
& \quad \mathbf{a}=[a, b, c, d, e, f], \\
& \quad \mathbf{x}=\left[x^{2}, x y, y^{2}, x, y, 1\right]
\end{aligned}
$$

- Minimizing the geometric distance is non-linear even for a conic
- Algebraic distance: C(a, x)
- Algebraic distance minimization by linear least squares:

$$
\left[\begin{array}{cccccc}
x_{1}^{2} & x_{1} y_{1} & y_{1}^{2} & x_{1} & y_{1} & 1 \\
x_{2}^{2} & x_{2} y_{2} & y_{2}^{2} & x_{2} & y_{2} & 1 \\
\vdots & & & & \ddots & \vdots \\
x_{n}^{2} & x_{n} y_{n} & y_{n}^{2} & x_{n} & y_{n} & 1
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d \\
e \\
f
\end{array}\right]=0
$$

Least squares for conics

- Least squares system: Da = 0
- Need constraint on a to prevent trivial solution
- Discriminant: $b^{2}-4 a c$
- Negative: ellipse
- Zero: parabola
- Positive: hyperbola
- Minimizing squared algebraic distance subject to constraints leads to a generalized eigenvalue problem
- Many variations possible
- For more information:
- A. Fitzgibbon, M. Pilu, and R. Fisher, Direct least-squares fitting of ellipses, IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(5), 476--480, May 1999

Least squares: Robustness to noise

Least squares fit to the red points:

Least squares: Robustness to noise

Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers

Robust estimators

- General approach: minimize

$$
\sum_{i} \rho\left(r_{i}\left(x_{i}, \theta\right) ; \sigma\right)
$$

$r_{i}\left(x_{i}, \theta\right)-$ residual of ith point w.r.t. model parameters θ ρ - robust function with scale parameter σ

The robust function ρ behaves like squared distance for small values of the residual u but saturates for larger values of u

Choosing the scale: Just right

The effect of the outlier is eliminated

Choosing the scale: Too small

The error value is almost the same for every point and the fit is very poor

Choosing the scale: Too large

Behaves much the same as least squares

Robust estimation: Notes

- Robust fitting is a nonlinear optimization problem that must be solved iteratively
- Least squares solution can be used for initialization
- Adaptive choice of scale:
"magic number" times median residual

$$
\sigma^{(n)}=1.4826 \operatorname{median}_{i}\left|r_{i}^{(n)}\left(x_{i} ; \theta^{(n-1)}\right)\right|
$$

RANSAC

- Robust fitting can deal with a few outliers what if we have very many?
- Random sample consensus (RANSAC): Very general framework for model fitting in the presence of outliers
- Outline
- Choose a small subset uniformly at random
- Fit a model to that subset
- Find all remaining points that are "close" to the model and reject the rest as outliers
- Do this many times and choose the best model
M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp 381-395, 1981.

RANSAC for line fitting

Repeat \boldsymbol{N} times:

- Draw s points uniformly at random
- Fit line to these s points
- Find inliers to this line among the remaining points (i.e., points whose distance from the line is less than t)
- If there are \boldsymbol{d} or more inliers, accept the line and refit using all inliers

Choosing the parameters

- Initial number of points s
- Typically minimum number needed to fit the model
- Distance threshold t
- Choose t so probability for inlier is p (e.g. 0.95)
- Zero-mean Gaussian noise with std. dev. σ : $\mathrm{t}^{2}=3.84 \sigma^{2}$
- Number of samples N
- Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

Choosing the parameters

- Initial number of points s
- Typically minimum number needed to fit the model
- Distance threshold t
- Choose t so probability for inlier is p (e.g. 0.95)
- Zero-mean Gaussian noise with std. dev. σ : $\mathrm{t}^{2}=3.84 \sigma^{2}$
- Number of samples N
- Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

$$
\begin{aligned}
& \left(1-(1-e)^{s}\right)^{N}=1-p \\
& N=\log (1-p) / \log \left(1-(1-e)^{s}\right)
\end{aligned}
$$

proportion of outliers e							
\mathbf{s}	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

Choosing the parameters

- Initial number of points s
- Typically minimum number needed to fit the model
- Distance threshold t
- Choose t so probability for inlier is p (e.g. 0.95)
- Zero-mean Gaussian noise with std. dev. σ : $\mathrm{t}^{2}=3.84 \sigma^{2}$
- Number of samples N
- Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)

$$
\begin{aligned}
& \left(1-(1-e)^{s}\right)^{N}=1-p \\
& N=\log (1-p) / \log \left(1-(1-e)^{s}\right)
\end{aligned}
$$

Choosing the parameters

- Initial number of points s
- Typically minimum number needed to fit the model
- Distance threshold t
- Choose t so probability for inlier is p (e.g. 0.95)
- Zero-mean Gaussian noise with std. dev. σ : $\mathrm{t}^{2}=3.84 \sigma^{2}$
- Number of samples N
- Choose N so that, with probability p, at least one random sample is free from outliers (e.g. $p=0.99$) (outlier ratio: e)
- Consensus set size d
- Should match expected inlier ratio

Adaptively determining the number of samples

- Inlier ratio e is often unknown a priori, so pick worst case, e.g. 50%, and adapt if more inliers are found, e.g. 80\% would yield $e=0.2$
- Adaptive procedure:
- $N=\infty$, sample_count $=0$
- While N >sample_count
- Choose a sample and count the number of inliers
- Set e = 1 - (number of inliers)/(total number of points)
- Recompute N from e:

$$
N=\log (1-p) / \log \left(1-(1-e)^{s}\right)
$$

- Increment the sample_count by 1

RANSAC pros and cons

- Pros
- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
- Lots of parameters to tune
- Can't always get a good initialization of the model based on the minimum number of samples
- Sometimes too many iterations are required
- Can fail for extremely low inlier ratios
- We can often do better than brute-force sampling

