
Fitting



Fitting: Motivation

• We’ve learned how to 
detect edges, corners, 
blobs. Now what?

• We would like to form a 
higher-level, more 
compact representation of 
the features in the image 
by grouping multiple 
features according to a 
simple model
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Source: K. Grauman

Fitting
• Choose a parametric model to represent a 

set of features

simple model: lines simple model: circles

complicated model: car



Fitting
• Choose a parametric model to represent a 

set of features
• Membership criterion is not local

• Can’t tell whether a point belongs to a given model just by 
looking at that point

• Three main questions:
• What model represents this set of features best?
• Which of several model instances gets which feature?
• How many model instances are there?

• Computational complexity is important
• It is infeasible to examine every possible set of parameters 

and every possible combination of features



Fitting: Issues

• Noise in the measured feature locations
• Extraneous data: clutter (outliers), multiple lines
• Missing data: occlusions

Case study: Line detection



Fitting: Issues
• If we know which points belong to the line, 

how do we find the “optimal” line parameters?
• Least squares

• What if there are outliers?
• Robust fitting, RANSAC

• What if there are many lines?
• Voting methods: RANSAC, Hough transform

• What if we’re not even sure it’s a line?
• Model selection



Least squares line fitting
Data: (x1, y1), …, (xn, yn)
Line equation: yi = m xi + b
Find (m, b) to minimize 
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Least squares line fitting
Data: (x1, y1), …, (xn, yn)
Line equation: yi = m xi + b
Find (m, b) to minimize 
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Normal equations: least squares solution to 
XB=Y
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Problem with “vertical” least squares
• Not rotation-invariant
• Fails completely for vertical lines



Total least squares
Distance between point (xn, yn) and 
line ax+by=d (a2+b2=1): |ax + by – d|
Find (a, b, d) to minimize the sum of 
squared perpendicular distances ∑=
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Total least squares
Distance between point (xn, yn) and 
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Solution to (UTU)N = 0, subject to ||N||2 = 1: eigenvector of UTU
associated with the smallest eigenvalue (least squares solution 
to homogeneous linear system UN = 0)



Total least squares
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Total least squares
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Least squares as likelihood maximization
• Generative model: line 

points are corrupted by 
Gaussian noise in the 
direction perpendicular to 
the line
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Least squares as likelihood maximization
• Generative model: line 

points are corrupted by 
Gaussian noise in the 
direction perpendicular to 
the line
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Least squares for general curves
• We would like to minimize the sum of squared 

geometric distances between the data points 
and the curve

(xi, yi)
d((xi, yi), C)

curve C



Least squares for conics
• Equation of a general conic:

C(a, x) = a · x = ax2 + bxy + cy2 + dx + ey + f = 0, 
a = [a, b, c, d, e, f], 
x = [x2, xy, y2, x, y, 1]

• Minimizing the geometric distance is non-linear even for 
a conic

• Algebraic distance: C(a, x)
• Algebraic distance minimization by linear least squares:
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Least squares for conics
• Least squares system: Da = 0
• Need constraint on a to prevent trivial solution
• Discriminant: b2 – 4ac

• Negative: ellipse
• Zero: parabola
• Positive: hyperbola

• Minimizing squared algebraic distance subject to 
constraints leads to a generalized eigenvalue 
problem
• Many variations possible

• For more information: 
• A. Fitzgibbon, M. Pilu, and R. Fisher, Direct least-squares fitting 

of ellipses, IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 21(5), 476--480, May 1999 

http://research.microsoft.com/~awf/ellipse/
http://research.microsoft.com/~awf/ellipse/


Least squares: Robustness to noise
Least squares fit to the red points:



Least squares: Robustness to noise
Least squares fit with an outlier:

Problem: squared error heavily penalizes outliers



Robust estimators
• General approach: minimize

ri (xi, θ) – residual of ith point w.r.t. model parameters θ
ρ – robust function with scale parameter σ

( )( )σθρ ;,ii
i

xr∑

The robust function 
ρ behaves like 
squared distance for 
small values of the 
residual u but 
saturates for larger 
values of u



Choosing the scale: Just right

The effect of the outlier is eliminated



The error value is almost the same for every
point and the fit is very poor

Choosing the scale: Too small



Choosing the scale: Too large

Behaves much the same as least squares



Robust estimation: Notes
• Robust fitting is a nonlinear optimization 

problem that must be solved iteratively
• Least squares solution can be used for 

initialization
• Adaptive choice of scale:

“magic number” times median residual



RANSAC
• Robust fitting can deal with a few outliers –

what if we have very many?
• Random sample consensus (RANSAC): 

Very general framework for model fitting in 
the presence of outliers

• Outline
• Choose a small subset uniformly at random
• Fit a model to that subset
• Find all remaining points that are “close” to the model and 

reject the rest as outliers
• Do this many times and choose the best model

M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model 
Fitting with Applications to Image Analysis and Automated Cartography. Comm. of 
the ACM, Vol 24, pp 381-395, 1981.

http://www.ai.sri.com/pubs/files/836.pdf
http://www.ai.sri.com/pubs/files/836.pdf


RANSAC for line fitting
Repeat N times:
• Draw s points uniformly at random
• Fit line to these s points
• Find inliers to this line among the remaining 

points (i.e., points whose distance from the 
line is less than t)

• If there are d or more inliers, accept the line 
and refit using all inliers



Choosing the parameters
• Initial number of points s

• Typically minimum number needed to fit the model

• Distance threshold t
• Choose t so probability for inlier is p (e.g. 0.95) 
• Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

• Number of samples N
• Choose N so that, with probability p, at least one random 

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

Source: M. Pollefeys
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• Initial number of points s
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• Distance threshold t
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• Number of samples N
• Choose N so that, with probability p, at least one random 

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

( ) ( )( )sepN −−−= 11log/1log

( )( ) pe
Ns −=−− 111

proportion of outliers e
s 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177

Source: M. Pollefeys
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Choosing the parameters
• Initial number of points s

• Typically minimum number needed to fit the model

• Distance threshold t
• Choose t so probability for inlier is p (e.g. 0.95) 
• Zero-mean Gaussian noise with std. dev. σ: t2=3.84σ2

• Number of samples N
• Choose N so that, with probability p, at least one random 

sample is free from outliers (e.g. p=0.99) (outlier ratio: e)

• Consensus set size d
• Should match expected inlier ratio

Source: M. Pollefeys



Adaptively determining the number of samples

• Inlier ratio e is often unknown a priori, so pick 
worst case, e.g. 50%, and adapt if more 
inliers are found, e.g. 80% would yield e=0.2 

• Adaptive procedure:
• N=∞, sample_count =0
• While N >sample_count

– Choose a sample and count the number of inliers
– Set e = 1 – (number of inliers)/(total number of points)
– Recompute N from e:

– Increment the sample_count by 1

( ) ( )( )sepN −−−= 11log/1log

Source: M. Pollefeys



RANSAC pros and cons
• Pros

• Simple and general
• Applicable to many different problems
• Often works well in practice

• Cons
• Lots of parameters to tune
• Can’t always get a good initialization of the model based on 

the minimum number of samples
• Sometimes too many iterations are required
• Can fail for extremely low inlier ratios
• We can often do better than brute-force sampling
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