
Feature extraction: Corners and blobs
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Step 3: align images



Characteristics of good features

• Repeatability
• The same feature can be found in several images despite geometric 

and photometric transformations 

• Saliency
• Each feature has a distinctive description

• Compactness and efficiency
• Many fewer features than image pixels

• Locality
• A feature occupies a relatively small area of the image; robust to 

clutter and occlusion



Applications  
Feature points are used for:

• Motion tracking
• Image alignment 
• 3D reconstruction
• Object recognition
• Indexing and database retrieval
• Robot navigation



Finding Corners

• Key property: in the region around a corner, 
image gradient has two or more dominant 
directions

• Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“
Proceedings of the 4th Alvey Vision Conference: pages 147--151.

http://www.csse.uwa.edu.au/~pk/research/matlabfns/Spatial/Docs/Harris/A_Combined_Corner_and_Edge_Detector.pdf


The Basic Idea

• We should easily recognize the point by 
looking through a small window

• Shifting a window in any direction should 
give a large change in intensity

“edge”:
no change 
along the edge 
direction

“corner”:
significant 
change in all 
directions

“flat” region:
no change in 
all directions

Source: A. Efros



Harris Detector: Mathematics
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Change in appearance for the shift [u,v]:

IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside

Source: R. Szeliski



Harris Detector: Mathematics
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Change in appearance for the shift [u,v]:

Second-order Taylor expansion of E(u,v) about (0,0)
(bilinear approximation for small shifts):
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Harris Detector: Mathematics
The bilinear approximation simplifies to
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where M is a 2×2 matrix computed from image derivatives:
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The surface E(u,v) is locally approximated by a 
quadratic form. Let’s try to understand its shape.

Interpreting the second moment matrix
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First, consider the axis-aligned case 
(gradients are either horizontal or vertical)

If either λ is close to 0, then this is not a corner, so 
look for locations where both are large.

Interpreting the second moment matrix



General Case

Since M is symmetric, we have RRM ⎥
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We can visualize M as an ellipse with axis 
lengths determined by the eigenvalues and 
orientation determined by R

direction of the 
slowest change

direction of the 
fastest change
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Visualization of second moment matrices



Visualization of second moment matrices



Interpreting the eigenvalues

λ1

λ2

“Corner”
λ1 and λ2 are large,
λ1 ~ λ2;
E increases in all 
directions

λ1 and λ2 are small;
E is almost constant 
in all directions

“Edge” 
λ1 >> λ2

“Edge” 
λ2 >> λ1

“Flat” 
region

Classification of image points using eigenvalues 
of M:



Corner response function

“Corner”
R > 0

“Edge” 
R < 0

“Edge” 
R < 0

“Flat” 
region

|R| small

2
2121

2 )()(trace)det( λλαλλα +−=−= MMR

α: constant (0.04 to 0.06)



Harris detector: Steps

1. Compute Gaussian derivatives at each pixel
2. Compute second moment matrix M in a 

Gaussian window around each pixel 
3. Compute corner response function R
4. Threshold R
5. Find local maxima of response function 

(nonmaximum suppression)



Harris Detector: Steps



Harris Detector: Steps
Compute corner response R



Harris Detector: Steps
Find points with large corner response: R>threshold



Harris Detector: Steps
Take only the points of local maxima of R



Harris Detector: Steps



Invariance
• We want features to be detected despite 

geometric or photometric changes in the 
image: if we have two transformed versions of 
the same image, features should be detected 
in corresponding locations



Models of Image Change

Geometric
• Rotation

• Scale

• Affine
valid for: orthographic camera, locally planar object

Photometric
• Affine intensity change (I → a I + b)



Harris Detector: Invariance Properties
Rotation

Ellipse rotates but its shape (i.e. eigenvalues) 
remains the same

Corner response R is invariant to image rotation



Harris Detector: Invariance Properties
Affine intensity change

 Only derivatives are used => 
invariance to intensity shift I → I + b

 Intensity scale: I → a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity change



Harris Detector: Invariance Properties

Scaling

All points will 
be classified 
as edges

Corner

Not invariant to scaling



Scale-invariant feature detection
• Goal: independently detect corresponding 

regions in scaled versions of the same image
• Need scale selection mechanism for finding 

characteristic region size that is covariant with 
the image transformation



Scale-invariant features: Blobs



Recall: Edge detection

g
dx
df ∗

f

g
dx
d

Source: S. Seitz

Edge

Derivative
of Gaussian

Edge = maximum
of derivative



Edge detection, Take 2

g
dx
df 2

2

∗

f

g
dx
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2

2

Edge

Second derivative
of Gaussian 
(Laplacian)

Edge = zero crossing
of second derivative

Source: S. Seitz



From edges to blobs
• Edge = ripple
• Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian
response will achieve a maximum at the center of
the blob, provided the scale of the Laplacian is
“matched” to the scale of the blob

maximum



Scale selection
• We want to find the characteristic scale of the 

blob by convolving it with Laplacians at several 
scales and looking for the maximum response

• However, Laplacian response decays as scale 
increases:

Why does this happen?

increasing σoriginal signal
(radius=8)



Scale normalization
• The response of a derivative of Gaussian 

filter to a perfect step edge decreases as σ
increases

πσ 2
1



Scale normalization
• The response of a derivative of Gaussian 

filter to a perfect step edge decreases as σ
increases

• To keep response the same (scale-invariant), 
must multiply Gaussian derivative by σ

• Laplacian is the second Gaussian derivative, 
so it must be multiplied by σ2



Effect of scale normalization

Scale-normalized Laplacian response

Unnormalized Laplacian responseOriginal signal

maximum



Blob detection in 2D
Laplacian of Gaussian: Circularly symmetric 

operator for blob detection in 2D
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Blob detection in 2D
Laplacian of Gaussian: Circularly symmetric 

operator for blob detection in 2D
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Scale selection
• At what scale does the Laplacian achieve a 

maximum response for a binary circle of 
radius r?

r

image Laplacian



Scale selection
• The 2D Laplacian is given by 

• Therefore, for a binary circle of radius r, the 
Laplacian achieves a maximum at 2/r=σ
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Characteristic scale
• We define the characteristic scale as the 

scale that produces peak of Laplacian 
response

characteristic scale
T. Lindeberg (1998). "Feature detection with automatic scale selection."
International Journal of Computer Vision 30 (2): pp 77--116. 

http://www.nada.kth.se/cvap/abstracts/cvap198.html


Scale-space blob detector
1. Convolve image with scale-normalized 

Laplacian at several scales
2. Find maxima of squared Laplacian response 

in scale-space



Scale-space blob detector: Example



Scale-space blob detector: Example



Scale-space blob detector: Example



Approximating the Laplacian with a difference of 
Gaussians:

( )2 ( , , ) ( , , )xx yyL G x y G x yσ σ σ= +

( , , ) ( , , )DoG G x y k G x yσ σ= −

(Laplacian)

(Difference of Gaussians)

Efficient implementation



Efficient implementation

David G. Lowe. "Distinctive image features from scale-invariant 
keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


From scale invariance to affine invariance



Affine adaptation

Recall: RR
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We can visualize M as an ellipse with axis 
lengths determined by the eigenvalues and 
orientation determined by R
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Affine adaptation example

Scale-invariant regions (blobs)



Affine adaptation example

Affine-adapted blobs



Affine normalization
• The second moment ellipse can be viewed as 

the “characteristic shape” of a region
• We can normalize the region by transforming 

the ellipse into a unit circle



Orientation ambiguity
• There is no unique transformation from an 

ellipse to a unit circle
• We can rotate or flip a unit circle, and it still stays a unit circle



Orientation ambiguity
• There is no unique transformation from an 

ellipse to a unit circle
• We can rotate or flip a unit circle, and it still stays a unit circle

• So, to assign a unique orientation to keypoints:
• Create histogram of local gradient directions in the patch
• Assign canonical orientation at peak of smoothed histogram

0 2 π



Affine adaptation
• Problem: the second moment “window” 

determined by weights w(x,y) must match the 
characteristic shape of the region

• Solution: iterative approach
• Use a circular window to compute second moment matrix
• Perform affine adaptation to find an ellipse-shaped window
• Recompute second moment matrix using new window and 

iterate



Iterative affine adaptation

K. Mikolajczyk and C. Schmid, Scale and Affine invariant interest 
point detectors, IJCV 60(1):63-86, 2004. 

http://www.robots.ox.ac.uk/~vgg/research/affine/

http://www.robots.ox.ac.uk/~vgg/research/affine/det_eval_files/mikolajczyk_ijcv2004.pdf
http://www.robots.ox.ac.uk/~vgg/research/affine/det_eval_files/mikolajczyk_ijcv2004.pdf
http://www.robots.ox.ac.uk/~vgg/research/affine/


Summary: Feature extraction

Extract affine regions Normalize regions
Eliminate rotational 

ambiguity
Compute appearance

descriptors

SIFT (Lowe ’04)



Invariance vs. covariance
Invariance:

• features(transform(image)) = features(image)

Covariance:
• features(transform(image)) = transform(features(image))

Covariant detection => invariant description



Next time: Fitting
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