## Review

- Pinhole projection model
- What are vanishing points and vanishing lines?
- What is orthographic projection?
- How can we approximate orthographic projection?
- Lenses
- Why do we need lenses?
- What is depth of field?
- What controls depth of field?
- What is field of view?
- What controls field of view?
- What are some kinds of lens aberrations?
- Digital cameras
- What are the two major types of sensor technologies?
- How can we capture color with a digital camera?


## Assignment 1: Demosaicing

| $?$ |  | $?$ |  | $?$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $?$ | $?$ |  | $?$ | $?$ | $?$ |
| $?$ |  | $?$ |  | $?$ | $?$ |
| $?$ | $?$ | $?$ | $?$ | $?$ |  |
| $?$ |  | $?$ |  | $?$ |  |
| $?$ | $?$ | $?$ | $?$ | $?$ | $?$ |


|  | $?$ |  | $?$ |  | $?$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $?$ |  | $?$ |  | $?$ |  |
|  | $?$ |  | $?$ |  | $?$ |
| $?$ | - | $\frac{1}{2}$ |  | $?$ |  |
|  | $?$ | 1 | $?$ |  | $?$ |
| $?$ |  | $?$ |  | $?$ |  |


| $?$ | $?$ | $?$ | $?$ | $?$ | $?$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $?$ |  | $?$ |  | $?$ |
| $?$ | $\ddots$ | $?$ | $?$ | $?$ | $?$ |
|  | $?$ | $?$ | $?$ |  | $?$ |
| $?$ | $?$ | $?$ | $?$ |  | $?$ |
| $?$ | $?$ | $?$ | $?$ | $?$ | $?$ |
|  | $?$ |  | $?$ |  | $?$ |

## Historical context

- Pinhole model: Mozi (470-390 BCE), Aristotle (384-322 BCE)
- Principles of optics (including lenses): Alhacen (965-1039 CE)
- Camera obscura: Leonardo da Vinci (1452-1519), Johann Zahn (1631-1707)
- First photo: Joseph Nicephore Niepce (1822)
- Daguerréotypes (1839)
- Photographic film: Eastman (1889)
- Cinema: Lumière Brothers (1895)
- Color Photography: Lumière Brothers (1908)


Alhacen's notes


Niepce, "La Table Servie," 1822


CCD chip

## 10 Early Firsts In Photography

http://listverse.com/history/top-10-incredible-early-firsts-in-photographyl


## Early color photography

Sergey Prokudin-Gorsky (1863-1944) Photographs of the Russian empire (1909-1916)


## Lantern projector


http://en.wikipedia.org/wiki/Sergei Mikhailovich Prokudin-Gorskii http://www.loc.gov/exhibits/empire/

## "Fake miniatures"



Create your own fake miniatures: $\underline{\text { http://tiltshiftmaker.com/ }}$ http://tiltshiftmaker.com/tilt-shift-photo-gallery.php

Idea for class participation: if you find interesting (and relevant) links, send them to me or (better yet) to the class mailing list (comp776@cs.unc.edu).

## Today: Capturing light



## Radiometry

What determines the brightness of an image pixel?

Sensor characteristics


## Solid Angle

- By analogy with angle (in radians), the solid angle subtended by a region at a point is the area projected on a unit sphere centered at that point
- The solid angle $d \omega$ subtended by a patch of area $d A$ is given by:

$$
d \omega=\frac{d A \cos \theta}{r^{2}}
$$



## Radiometry

- Radiance (L): energy carried by a ray
- Power per unit area perpendicular to the direction of travel, per unit solid angle
- Units: Watts per square meter per steradian $\left(\mathrm{W} \mathrm{m}^{-2} \mathrm{sr}^{-1}\right)$
- Irradiance (E): energy arriving at a surface
- Incident power in a given direction per unit area
- Units: W m²
- For a surface receiving radiance $L(x, \theta, \phi)$ coming in from $\mathrm{d} \omega$ the corresponding irradiance is

$$
E(\theta, \phi)=L(\theta, \phi) \cos \theta d \omega
$$



## Radiometry of thin lenses

L: Radiance emitted from $P$ toward $P^{\prime}$
$E$ : Irradiance falling on $P^{\prime}$ from the lens


What is the relationship between $E$ and $L$ ?

## Example: Radiometry of thin lenses



$$
\begin{aligned}
& \qquad|O P|=\frac{z}{\cos \alpha} \\
& \left|O P^{\prime}\right|=\frac{z^{\prime}}{\cos \alpha} \\
& \text { Area of the lens: } \frac{\pi d^{2}}{4}
\end{aligned}
$$

The power $\delta P$ received by the lens from $P$ is $\delta P=L\left(\frac{\pi d^{2}}{4}\right) \cos \alpha \delta \omega$
The radiance emitted from the lens towards $\mathrm{dA}^{\prime}$ is $\frac{\delta P}{\left(\frac{\pi d^{2}}{4}\right) \cos \alpha \delta \omega}=L$
The irradiance received at $\mathrm{P}^{\prime}$ is

$$
E=L \cos \alpha\left(\frac{\pi d^{2} \cos \alpha}{4\left(z^{\prime} / \cos \alpha\right)^{2}}\right)=\left[\frac{\pi}{4}\left(\frac{d}{z^{\prime}}\right)^{2} \cos ^{4} \alpha\right] L
$$

## Radiometry of thin lenses



- Image irradiance is linearly related to scene radiance
- Irradiance is proportional to the area of the lens and inversely proportional to the squared distance between the lens and the image plane
- The irradiance falls off as the angle between the viewing ray and the optical axis increases


## Radiometry of thin lenses

$$
E=\left[\frac{\pi}{4}\left(\frac{d}{z^{\prime}}\right)^{2} \cos ^{4} \alpha\right] L
$$

- Application:
- S. B. Kang and R. Weiss, Can we calibrate a camera using an image of a flat, textureless Lambertian surface? ECCV 2000.



## The journey of the light ray



- Camera response function: the mapping $f$ from irradiance to pixel values
- Useful if we want to estimate material properties
- Enables us to create high dynamic range images


## The journey of the light ray



- Camera response function: the mapping $f$ from irradiance to pixel values


## For more info

- P. E. Debevec and J. Malik. Recovering High Dynamic Range Radiance Maps from Photographs. In SIGGRAPH 97, August 1997


## The interaction of light and surfaces

## What happens when a light ray hits a point on an object?

- Some of the light gets absorbed
- converted to other forms of energy (e.g., heat)
- Some gets transmitted through the object
- possibly bent, through "refraction"
- Some gets reflected
- possibly in multiple directions at once
- Really complicated things can happen
- fluorescence

Let's consider the case of reflection in detail

- In the most general case, a single incoming ray could be reflected in all directions. How can we describe the amount of light reflected in each direction?


## Bidirectional reflectance distribution function (BRDF)

- Model of local reflection that tells how bright a surface appears when viewed from one direction when light falls on it from another
- Definition: ratio of the radiance in the outgoing direction to irradiance in the incident direction


$$
\rho\left(\theta_{i}, \phi_{i}, \theta_{e}, \phi_{e}\right)=\frac{L_{e}\left(\theta_{e}, \phi_{e}\right)}{E_{i}\left(\theta_{i}, \phi_{i}\right)}=\frac{L_{e}\left(\theta_{e}, \phi_{e}\right)}{L_{i}\left(\theta_{i}, \phi_{i}\right) \cos \theta_{i} d \omega}
$$

- Radiance leaving a surface in a particular direction: add contributions from every incoming direction

$$
\int_{\Omega} \rho\left(\theta_{i}, \phi_{i}, \theta_{e}, \phi_{e},\right) L_{i}\left(\theta_{i}, \phi_{i}\right) \cos \theta_{i} d \omega_{i}
$$

## BRDF's can be incredibly complicated...



## Diffuse reflection



- Light is reflected equally in all directions: BRDF is constant
- Dull, matte surfaces like chalk or latex paint
- Microfacets scatter incoming light randomly
- Albedo: fraction of incident irradiance reflected by the surface
- Radiosity: total power leaving the surface per unit area (regardless of direction)


## Diffuse reflection: Lambert's law

- Viewed brightness does not depend on viewing direction, but it does depend on direction of illumination


$$
B(x)=\rho_{d}(x)\left(N(x) \cdot S_{d}(x)\right)
$$


$B$ : radiosity
$\rho$ : albedo
$N$ : unit normal
$S$ : source vector (magnitude proportional to intensity of the source)

## Specular reflection

- Radiation arriving along a source direction leaves along the specular direction (source direction reflected about normal)
- Some fraction is absorbed, some reflected
- On real surfaces, energy usually goes into a lobe of directions
- Phong model: reflected energy falls of with $\cos ^{n}(\delta \theta)$
- Lambertian + specular model: sum of diffuse and specular term



## Specular reflection



Moving the light source


Changing the exponent

## Photometric stereo

## Assume:

- A Lambertian object
- A local shading model (each point on a surface receives light only from sources visible at that point)
- A set of known light source directions
- A set of pictures of an object, obtained in exactly the same camera/object configuration but using different sources
- Orthographic projection

Goal: reconstruct object shape and albedo


## Surface model: Monge patch



Forsyth \& Ponce, Sec. 5.4

## Image model

- Known: source vectors $S_{j}$ and pixel values $I_{j}(x, y)$
- We also assume that the response function of the camera is a linear scaling by a factor of $k$
- Combine the unknown normal $N(x, y)$ and albedo $\rho(x, y)$ into one vector $g$, and the scaling constant $k$ and source vectors $S_{j}$ into another vector $V_{j \text { : }}$

$$
\begin{aligned}
I_{j}(x, y) & =k B(x, y) \\
& =k \rho(x, y)\left(N(x, y) \cdot S_{j}\right) \\
& =(\rho(x, y) N(x, y)) \cdot\left(k S_{j}\right) \\
& =g(x, y) \cdot V_{j}
\end{aligned}
$$

## Least squares problem

- For each pixel, we obtain a linear system:

$$
\left[\begin{array}{c}
{\left[\begin{array}{c}
I_{1}(x, y) \\
I_{2}(x, y) \\
\vdots \\
I_{n}(x, y)
\end{array}\right]} \\
\mid \\
\begin{array}{c}
(n \times 1) \\
\text { known }
\end{array} \\
{\left[\begin{array}{c}
V_{1}{ }^{T} \\
V_{2}{ }^{T} \\
\vdots \\
V_{n}{ }^{T}
\end{array}\right] g(x, y)} \\
\left.\left\lvert\, \begin{array}{c}
(n \times 3) \\
\text { known }
\end{array}\right.\right] \begin{array}{c}
(3 \times 1) \\
\text { unknown }
\end{array}
\end{array}\right.
$$

- Obtain least-squares solution for $g(x, y)$
- Since $N(x, y)$ is the unit normal, $\rho(x, y)$ is given by the magnitude of $g(x, y)$ (and it should be less than 1)
- Finally, $N(x, y)=g(x, y) / \rho(x, y)$


## Example



Recovered normal field


## Recovering a surface from normals

Recall the surface is written as

$$
(x, y, f(x, y))
$$

This means the normal has the form:

$$
N(x, y)=\left(\frac{1}{\sqrt{f_{x}^{2}+f_{y}^{2}+1}}\right)\left(\begin{array}{c}
-f_{x} \\
-f_{y} \\
1
\end{array}\right)
$$

If we write the estimated
vector $g$ as

$$
\mathbf{g}(x, y)=\left(\begin{array}{l}
g_{1}(x, y) \\
g_{2}(x, y) \\
g_{3}(x, y)
\end{array}\right)
$$

Then we obtain values for the partial derivatives of the surface:

$$
\begin{aligned}
& f_{x}(x, y)=\left(g_{1}(x, y) / g_{3}(x, y)\right) \\
& f_{y}(x, y)=\left(g_{2}(x, y) / g_{3}(x, y)\right)
\end{aligned}
$$

## Recovering a surface from normals

Integrability: for the surface $f$ to exist, the mixed second partial derivatives must be equal:

$$
\begin{aligned}
& \frac{\partial\left(g_{1}(x, y) / g_{3}(x, y)\right)}{\partial y}= \\
& \frac{\partial\left(g_{2}(x, y) / g_{3}(x, y)\right)}{\partial x}
\end{aligned}
$$

(in practice, they should at least be similar)

We can now recover the surface height at any point by integration along some path, e.g.

$$
\begin{aligned}
f(x, y) & =\int_{0}^{x} f_{x}(s, y) d s+ \\
& \int_{0}^{y} f_{y}(x, t) d t+c
\end{aligned}
$$

(for robustness, can take integrals over many different paths and average the results)

## Surface recovered by integration



Forsyth \& Ponce, Sec. 5.4

## Limitations

- Orthographic camera model
- Simplistic reflectance and lighting model
- No shadows
- No interreflections
- No missing data
- Integration is tricky


## Finding the direction of the light source

$$
I(x, y)=N(x, y) \cdot S(x, y)+A
$$

Full 3D case:


For points on the occluding contour:

$$
\left(\begin{array}{ccc}
N_{x}\left(x_{1}, y_{1}\right) & N_{y}\left(x_{1}, y_{1}\right) & 1 \\
N_{x}\left(x_{2}, y_{2}\right) & N_{y}\left(x_{2}, y_{2}\right) & 1 \\
\vdots & \vdots & \vdots \\
N_{x}\left(x_{n}, y_{n}\right) & N_{y}\left(x_{n}, y_{n}\right) & 1
\end{array}\right)\left(\begin{array}{c}
S_{x} \\
S_{y} \\
A
\end{array}\right)=\left(\begin{array}{c}
I\left(x_{1}, y_{1}\right) \\
I\left(x_{2}, y_{2}\right) \\
\vdots \\
I\left(x_{n}, y_{n}\right)
\end{array}\right)
$$

P. Nillius and J.-O. Eklundh, "Automatic estimation of the projected light source direction," CVPR 2001

## Finding the direction of the light source


P. Nillius and J.-O. Eklundh, "Automatic estimation of the projected light source direction," CVPR 2001

## Application: Detecting composite photos

Fake photo


## Next time: Color



Phillip Otto Runge (1777-1810)

