COMP 776: Computer Vision

Basic Info

- Instructor: Svetlana Lazebnik (lazebnik@cs.unc.edu)
- Office hours: By appointment, FB 244

 Class webpage: <u>http://www.cs.unc.edu/~lazebnik/spring09</u>

Today

- Introduction to computer vision
- Course overview
- Course requirements

The goal of computer vision

• To perceive the story behind the picture

What we see

What a computer sees

Source: S. Narasimhan

The goal of computer vision

• To perceive the story behind the picture

• What exactly does this mean?

- Vision as a source of metric 3D information
- Vision as a source of semantic information

Vision as measurement device

Real-time stereo

NASA Mars Rover

Structure from motion

Multi-view stereo for community photo collections

Goesele et al.

Pollefeys et al.

Scene and context categorization

Qualitative spatial information slanted non-rigid moving object 我 团 结 万 and an air air air vertical rigid moving rigid moving object object horizontal slide credit: Fei-Fei, Fergus & Torralba

Why study computer vision?

• Vision is useful: Images and video are everywhere!

Surveillance and security

Medical and scientific images

Why study computer vision?

- Vision is useful
- Vision is interesting
- Vision is difficult
 - Half of primate cerebral cortex is devoted to visual processing
 - Achieving human-level visual perception is probably "AI-complete"

Why is computer vision difficult?

Challenges: viewpoint variation

Challenges: illumination

Challenges: scale

²slide credit: Fei-Fei, Fergus & Torralba

Challenges: deformation

Xu, Beihong 1943

slide credit: Fei-Fei, Fergus & Torralba

Challenges: occlusion

slide credit: Fei-Fei, Fergus & Torralba

Magritte, 1957

Challenges: background clutter

Emperor shrimp and commensal crab on a sea cucumber in Fiji Photograph by Tim Laman

© 2007 National Geographic Society. All rights reserved

Challenges: Motion

Challenges: object intra-class variation

slide credit: Fei-Fei, Fergus & Torralba

Challenges: local ambiguity

slide credit: Fei-Fei, Fergus & Torralba

Challenges or opportunities?

- Images are confusing, but they also reveal the structure of the world through numerous cues
- Our job is to interpret the cues!

Image source: J. Koenderink

Depth cues: Linear perspective

NATIONALGEOGRAPHIC.COM

© 2003 National Geographic Society. All rights reserved.

Depth cues: Aerial perspective

Depth ordering cues: Occlusion

Shape cues: Texture gradient

Position and lighting cues: Cast shadows

Source: J. Koenderink

Grouping cues: Similarity (color, texture, proximity)

NATIONALGEOGRAPHIC.COM

© 2003 National Geographic Society. All rights reserved.

Grouping cues: "Common fate"

Image credit: Arthus-Bertrand (via F. Durand)

Bottom line

- Perception is an inherently ambiguous problem
 - Many different 3D scenes could have given rise to a particular 2D picture

Bottom line

- Perception is an inherently ambiguous problem
 - Many different 3D scenes could have given rise to a particular 2D picture

- Possible solutions
 - Bring in more constraints (more images)
 - Use prior knowledge about the structure of the world
- Need a combination of different methods

Connections to other disciplines

Origins of computer vision

(a) Original picture.

(b) Differentiated picture.

(c) Line drawing.

(d) Rotated view.

L. G. Roberts, *Machine Perception* of *Three Dimensional Solids,* Ph.D. thesis, MIT Department of Electrical Engineering, 1963. Progress to date

The next slides show some examples of what current vision systems can do

Earth viewers (3D modeling)

Image from Microsoft's <u>Virtual Earth</u> (see also: <u>Google Earth</u>)

Source: S. Seitz

Photosynth

/ Home

- . Try it
- What is Photosynth?
- Collections
- Team blog
- Videos
- System requirements
- About us
- FAQ

The **Photosynth Technology Preview** is a taste of the newest - and, we hope, most exciting - way to **view photos** on a computer. Our software takes a large collection of photos of a place or an object, analyzes them for similarities, and then displays the photos in a reconstructed **three-dimensional space**, showing you how each one relates to the next.

http://labs.live.com/photosynth/

NOTE: Noah Snavely talk at GLUNCH tomorrow!

Optical character recognition (OCR)

Technology to convert scanned docs to text

• If you have a scanner, it probably came with OCR software

Digit recognition, AT&T labs http://www.research.att.com/~yann/

License plate readers http://en.wikipedia.org/wiki/Automatic_number_plate_recognition

Face detection

Many new digital cameras now detect faces

• Canon, Sony, Fuji, ...

Smile detection?

The Smile Shutter flow

Imagine a camera smart enough to catch every smile! In Smile Shutter Mode, your Cyber-shot[®] camera can automatically trip the shutter at just the right instant to catch the perfect expression.

Sony Cyber-shot® T70 Digital Still Camera

Source: S. Seitz

Object recognition (in supermarkets)

LaneHawk by EvolutionRobotics

"A smart camera is flush-mounted in the checkout lane, continuously watching for items. When an item is detected and recognized, the cashier verifies the quantity of items that were found under the basket, and continues to close the transaction. The item can remain under the basket, and with LaneHawk, you are assured to get paid for it... "

Face recognition

Who is she?

Vision-based biometrics

"How the Afghan Girl was Identified by Her Iris Patterns" Read the story

Source: S. Seitz

Login without a password...

	₩indows [™]
The computer is Only Arris Black Uper name:	inver and her been locked. Invest or an internetiation can unless the comp

Fingerprint scanners on many new laptops, other devices Face recognition systems now beginning to appear more widely <u>http://www.sensiblevision.com/</u>

Object recognition (in mobile phones)

This is becoming real:

- Lincoln Microsoft Research
- Point & Find

iPhone Apps: kooaba (www.kooaba.com)

iPhone Apps: **snoptell** (www.snaptell.com)

Query Images

Special effects: shape capture

The Matrix movies, ESC Entertainment, XYZRGB, NRC

Source: S. Seitz

Special effects: motion capture

Pirates of the Carribean, Industrial Light and Magic

Source: S. Seitz

Sports

Sportvision first down line Nice <u>explanation</u> on www.howstuffworks.com

Smart cars

Slide content courtesy of Amnon Shashua

Mobileye

- Vision systems currently in high-end BMW, GM, Volvo models
- By 2010: 70% of car manufacturers.

Vision-based interaction (and games)

Sony EyeToy

Nintendo Wii has camera-based IR tracking built in. See <u>Lee's work at</u> <u>CMU</u> on clever tricks on using it to create a <u>multi-touch display</u>!

Assistive technologies

Vision in space

<u>NASA'S Mars Exploration Rover Spirit</u> captured this westward view from atop a low plateau where Spirit spent the closing months of 2007.

Vision systems (JPL) used for several tasks

- Panorama stitching
- 3D terrain modeling
- Obstacle detection, position tracking
- For more, read "<u>Computer Vision on Mars</u>" by Matthies et al.

Robotics

NASA's Mars Spirit Rover http://en.wikipedia.org/wiki/Spirit_rover http://www.robocup.org/

Source: S. Seitz

The computer vision industry

• A list of companies here:

http://www.cs.ubc.ca/spider/lowe/vision.html

Course overview

- I. Early vision: Image formation and processing
- II. Mid-level vision: Grouping and fitting
- III. Multi-view geometry
- IV. Recognition
- V. Advanced topics

I. Early vision

• Basic image formation and processing

Cameras and sensors Light and color

Linear filtering Edge detection

Feature extraction: corner and blob detection

II. "Mid-level vision"

• Fitting and grouping

Alignment

Fitting: Least squares Hough transform RANSAC

III. Multi-view geometry

Stereo

Epipolar geometry

Tomasi & Kanade (1993)

Affine structure from motion

Драконь, видимый подъ различными углами зрънія По гравюрь на мьля изъ "Oculus artificialis teledioptricus" Цана. 1702 года.

Projective structure from motion

IV. Recognition

Patch description and matching

Bag-of-features models

Clustering and visual vocabularies

Classification

V. Advanced Topics

Time permitting... ullet

Face detection

Motion and tracking

Segmentation

Articulated models

Course requirements

• Philosophy: computer vision is best experienced hands-on

• Programming assignments: 50%

- Three or four assignments
- Expect the first one in the next couple of classes
- Brush up on your MATLAB skills (see web page for tutorial)

• Final assignment: 30%

- Recognition competition
- Winner gets a prize!
- Participation: 20%
 - Come to class regularly
 - Ask questions
 - Answer questions

Collaboration policy

- Feel free to discuss assignments with each other, but coding must be done individually
- Feel free to incorporate code or tips you find on the Web, provided this doesn't make the assignment trivial and you explicitly acknowledge your sources
- Remember: I can Google too!

For next time

- Self-study: MATLAB tutorial
- Reading: cameras and image formation (F&P chapter 1)

illum in tabula per radios Solis, quam in cœlo contingit: hoc eft,fi in cœlo fuperior pars deliquiñ patiatur,in radiis apparebit inferior deficere, vt ratio exigit optica. ols deliquina Anno (hrish Sic nos exacté Anno . 1544 . Louanii eclipfim Solis obleruauimus, inuenimusq; deficere paulo plus q dex-